Advertisement

Physical and Environmental Factors Influencing the Photochemistry of DNA

  • R. O. Rahn
Conference paper

Abstract

Deoxyribonucleic acid (DNA) contains four bases — adenine, guanine, thymine, and cytosine — each of which absorbs strongly in the ultraviolet (UV), with a maximum at ~260 nm. Irradiation of DNA in solution with UV light leads to the formation of cyclobutane dimers of the type between adjacent thymines. Cytosine-cytosine dimers and thymine-cytosine dimers are also produced by UV irradiation, though to a lesser extent. The purines, adenine and guanine, are considerably less reactive to UV than the pyrimidines. Thymine dimers were first obtained by Beukers and Berends from irradiated frozen solutions of thymine (1) and from irradiated DNA (2), and later by Wacker et al. (3) from irradiated vegetative bacterial cells. Subsequently Setlow et al. showed that such dimers inhibit the synthesis of DNA in growing bacteria (4). Several review articles (5, 6, 7) are available, discussing both the photochemistry of DNA and the nature and biological significance of pyrimidine dimers.

Keywords

Bacterial Spore Pyrimidine Dimer Thymine Dimer Spore Photoproduct Cyclobutane Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beukers, R., and W. Berends, Biochim. Biophys. Acta 41, 550 (1960).CrossRefGoogle Scholar
  2. 2.
    Beukers, R., J. Ijlstra, and W. Berends, Rec. Tray. Chim. 79, 101 (1960).CrossRefGoogle Scholar
  3. 3.
    Wacker, A., H. Dellweg, and D. Weinblum, Naturwiss. 47, 477 (1960).CrossRefGoogle Scholar
  4. 4.
    Setlow, R. B., P. A. Swenson, and W. L. Carrier, Science 142, 1464 (1963).CrossRefGoogle Scholar
  5. 5.
    Setlow, J. K., Current Topics in Radiation Research, Vol. II, ed. By M. Ebert and A. Howard. North-Holland Publishing Company, Amsterdam, 1966, pp. 195–248.Google Scholar
  6. 6.
    Burr, J. G.. 6, ed. by W. A. Noyes, Jr., G. S. Hammond, and J. N. Pitts, Jr. Interscience Publishers, a division of John Wiley and Sons, New York, 1968.Google Scholar
  7. 7.
    Setlow, R. B., Progress in Nucleic Acid Research and Molecular Biology, Vol. 8, ed. by J. N. Davidson and W. E. Cohn. Academic Press, New York, 1968.Google Scholar
  8. 8.
    Donnellan, J. E., Jr., and R. B. Setlow, Science 149, 308 (1965).CrossRefGoogle Scholar
  9. 9.
    Stafford, R. S., and J. E. Donnellan, Jr., Proc. Natl. Acad. Sci. U.S. 59, 822 (1968).CrossRefGoogle Scholar
  10. 10.
    Rahn, R. O., and L. Landry, unpublished results.Google Scholar
  11. 11.
    Dellweg, H., and A. Wacker, Z. Naturforsch. 17b, 827 (1962).Google Scholar
  12. 12.
    Lamola, A. A., and T. Yamane, Proc. Natl. Acad. Sci. U.S. 58, 443 (1967).CrossRefGoogle Scholar
  13. 13.
    Sinanoglu, O., and S. Abdulnur, Federation Proc. 24, No. 2, Part III, Suppl. 15, S-12 (1965).Google Scholar
  14. 14.
    Wacker, A., and E. Lodeman, Angew. Chem. Intern. Ed. 4, 150 (1965).Google Scholar
  15. 15.
    Zavil’gel’skii, G. B., B. N. Ilyashenko, and S. Ya. Dityatkin, Dok. Akad. Nauk, SSSR, 171, 732 (1966).Google Scholar
  16. 16.
    Tramer, Zofia, K. L. Wierzchowski, and D. Shugar, Acta Biochim. Polon. 16, 83 (1969).Google Scholar
  17. 17.
    Hosszu, J. L., and R. O. Rahn, Biochem. Biophys. Res. Commun. 29, 327 (1967).CrossRefGoogle Scholar
  18. 18.
    Rahn, R. O., and J. L. Hosszu, Photochem. Photobiol. 8, 53 (1968).CrossRefGoogle Scholar
  19. 19.
    Rahn, R. O., J. K. Setlow, and J. L. Hosszu, Biophys. J. 9, 510 (1969).CrossRefGoogle Scholar
  20. 20.
    Luyet, B., and D. Rasmussen, Biodynamica 10, 167 (1968).Google Scholar
  21. 21.
    Setlow, R. B., and J. K. Setlow, Proc. Natl. Acad. Sci. U.S. 48, 1250 (1962).CrossRefGoogle Scholar
  22. 22.
    Rahn, R. O., and J. L. Hosszu, Photochem. Photobiol. 7, 637 (1968).CrossRefGoogle Scholar
  23. 23.
    Donnellan, J. E., Jr., J. L. Hosszu, R. O. Rahn, and R. S. Stafford, Nature 219, 964 (1968).CrossRefGoogle Scholar
  24. 24.
    Falk, M., K. A. Hartman, Jr., and R. C. Lord, J. Am. Chem. Soc. 85, 391 (1963).Google Scholar
  25. 25.
    Rahn, R. O., and J. L. Hosszu, Biochim. Biophys. Acta 190, 126 (1969).Google Scholar
  26. 26.
    Sztumpf, E., and D. Shugar, Biochim. Biophys. Acta 61, 555 (1962).Google Scholar
  27. 27.
    Setlow, R. B., Science 153, 379 (1966).Google Scholar
  28. 28.
    Beukers, R., Photochem. Photobiol. 4, 935 (1965).CrossRefGoogle Scholar
  29. 29.
    Setlow, R. B., and W. L. Carrier, Nature 213, 906 (1967).CrossRefGoogle Scholar
  30. 30.
    Sutherland B. M., and J. C. Sutherland, Biophys. J. 9, 292 (1969).CrossRefGoogle Scholar
  31. 31.
    Yamane, T., and N. Davidson, J. Am. Chem. Soc. 83, 2599 (1969).CrossRefGoogle Scholar
  32. 32.
    Rahn, R. O., and L. Landry, Biochim. Biophys. Acta, submitted for publication.Google Scholar
  33. 33.
    Rahn, R. O., M. Battista, and L. Landry, Biochim. Biophys. Acta, submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • R. O. Rahn
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations