Photoelimination Reactions of Macromolecules

  • R. F. Reinisch
  • H. R. Gloria
  • G. M. Androes


At the present time, our understanding of macromolecular photochemistry is guided by the recognition that the overall photolysis reaction is attributed to a combination of mechanisms each of which would have to be studied independently for a proper understanding of the photoelimination process. Isolation of each mechanism is often experimentally difficult to achieve, and the need often arises for an analytical method which can predict and explain the behavior of complex photochemical systems. Our initial1 analytical description of the course of photoelimination reactions was concerned primarily with the rates of production and annihilation of electronically excited intermediates, rather than with the energy content and electronic configuration of the separate states. The basis for the earlier kinetic description was that the quantum yield of product formation, ØPC,2 is given by the summation equation,
$$ {{\text{ }\!\!\O\!\!\text{ }}_{\text{PC}}}\text{+}{{\text{ }\!\!\O\!\!\text{ }}_{\text{T}}}\text{+}{{\text{ }\!\!\O\!\!\text{ }}_{\text{I}}}\text{+}{{\text{ }\!\!\O\!\!\text{ }}_{\text{L}}}\text{+}{{\text{ }\!\!\O\!\!\text{ }}_{\text{REV}}}=1 $$
where ØT is the triplet yield, ØI is the singlet and triplet radia-tionless relaxation yield, ØL is the total luminescence yield, and ØREV represents relaxation via reversible processes yielding no net photochemical reaction. The magnitude of each of these competing processes and the yield for product formation could be readily estimated by the kinetic analysis.1


Excited Singlet State Excited Triplet State Energy Level Diagram Photochemical Behavior Photoionization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Reinisch and H. R. Gloria, A.C.S. Polymer Preprints, 9, 349 (1968).Google Scholar
  2. 2.
    J. G. Calvert and J. N. Pitts, Jr., “Photochemistry,” John Wiley & Sons, New York, N. Y., 1966,Chaps. 4, 6 and appendix.Google Scholar
  3. 3.
    R. M. Noyes, in “Progress in Reaction Kinetics,” G. Porter, ed., Vol. 1, Pergamon Press, N. Y. 1961, p. 129.Google Scholar
  4. 4.
    J. N. Murrell, “Theory of Electronic Spectra of Organic Molecules,” Methuen, London, 1965.Google Scholar
  5. 5.
    S. Glasstone, “Textbook of Physical Chemistry,” D. Van Nostrand Co., Inc., New York, N. Y., 1946, p. 204.Google Scholar
  6. 6a.
    Private communication from E. M. Evleth.Google Scholar
  7. 6b.
    A. Habersbergerova, “Ultraviolet and Visible Spectra of Electrons, Unstable Radicals and Ions.” English Translation in U.S.A.E.C. Facsimile Report No. UJV-1625.Google Scholar
  8. 7.
    M. Anbar and E. J. Hart, J. Phys. Chem. 69, 1244 (1965).CrossRefGoogle Scholar
  9. 8.
    F. H. Winslow, W. Matreyek, A. M. Trozzolo and R. H. Hansen, ACS Polymer Preprints 9, 377 (1968).Google Scholar
  10. 9.
    N. Grassie and N. A. Weir, J. Appl. Poly. Sci. 9, 975 (1965).CrossRefGoogle Scholar
  11. 10.
    W. C. Geddes, Rubber Chem. Technol. 40, 178 (1967), see also ref. 22.Google Scholar
  12. 11.
    R. F. Boyer, J. Phys. Colloid Chem. 51, 80 (1947).CrossRefGoogle Scholar
  13. 12.
    R. F. Reinisch, H. R. Gloria, and D. E. Wilson, ACS Polymer Preprints 7, 372, (1966).Google Scholar
  14. 13.
    R. F. Reinisch and H. R. Gloria, J. Solar Energy 12, 75 (1968).CrossRefGoogle Scholar
  15. 14.
    G. Herzberg, “Electronic Spectra of Polyatomic Molecules,” D. Van Nostrand Co., Inc., Princeton, N. J., 1967, p. 541.Google Scholar
  16. 15.
    D. F. Evans, J. Chem. Soc. (1960), 1735.Google Scholar
  17. 16.
    D. M. Golden, N. A. Gac, and S. W. Benson, Abstracts, 157th National Meeting, Amer. Chem. Soc. April, 1969.Google Scholar
  18. 17.
    K. W. Egger and S. W. Benson, J. Am. Chem. Soc. 88, 241 (1965).CrossRefGoogle Scholar
  19. 18.
    C. L. Currie and D. A. Ramsay, J. Chem. Phys. 45, 488 (1966).CrossRefGoogle Scholar
  20. 19.
    E. J. Burrel, Jr. and P. K. Battacharyya, J. Chem. Phys. 71, 774 (1967).CrossRefGoogle Scholar
  21. 20.
    D. M. Bodily and M. Dole, J. Chem. Phys. 45, 1428 (1966).CrossRefGoogle Scholar
  22. 21.
    A. F. Trottman-Dickenson in: Advances in Free Radical Chemistry, Vol. I, G. H. Williams, Ed., ( Logos ), London, 1965, p. 11.Google Scholar
  23. 22.
    R. F. Reinisch, H. R. Gloria, and G. M. Androes, to be published.Google Scholar
  24. 23.
    M. W. Hanna, et al. J. Chem. Phys. 37, 361 (1962).CrossRefGoogle Scholar
  25. 24.
    C. L. Gardner, J. Chem. Phys. 46, 2991, (1967).CrossRefGoogle Scholar
  26. 25.
    F. Sondheimer, et al. J. Am. Chem. Soc. 83, 1675 (1961).CrossRefGoogle Scholar
  27. 26.
    M. L. Poutsma, J. Org. Chem. 31, 4167 (1966).CrossRefGoogle Scholar
  28. 27.
    W. I. Bengough and I. K. Varma, Europ. Poly. J. 2, 49 (1966).CrossRefGoogle Scholar
  29. 28.
    D. E. Wilson and F. M. Hamaker, in “Thermal Analysis,” Vol. I, R. F. Schwenker and P. Garn, Eds., Academic Press, Inc., New York, N. Y., 1969.Google Scholar
  30. 29.
    S. Ohnishi, Y. Nakajima, and I. Nitta, J. Appt. Polymer Sci. 6, 629 (1962).CrossRefGoogle Scholar
  31. 30.
    E. J. Lawton and J. S. Balwit, J. Phys. Chem. 65, 815 (1961).CrossRefGoogle Scholar
  32. 31.
    H. H. Jaffe and M. Orchin, “Theory and Applications of Ultraviolet Spectroscopy,” John Wiley and Sons, Inc., New York, N. Y., 1962, p. 257Google Scholar
  33. 32.
    I. B. Berlman, “Handbook of Fluorescence Spectra of Aromatic Molecules,” Academic Press, New York, N. Y. 1965.Google Scholar
  34. 33.
    M, T. Vala, J. Haebig and S. A. Rice, J. Chem. Phys. 43, 886 (1965).CrossRefGoogle Scholar
  35. 34.
    V. E. Shashoua, J. Am. Chem. Soc. 82, 5506 (1960).Google Scholar
  36. 35.
    D. S. McLure, J. Chem. Phys. 17, 905 (1949).CrossRefGoogle Scholar
  37. 36.
    G. Porter and E. Strachan, Spectrochim. Acta 12, 299 (1958).CrossRefGoogle Scholar
  38. 37.
    P. M. Johnson and A. C. Albrecht, J. Chem. Phys. 48, 851, (1968).CrossRefGoogle Scholar
  39. 38.
    V. I. Stenberg in “Organic Photochemistry,” Vol. I, Marcel Dekker, New York, N. Y., 1967, p. 127.Google Scholar
  40. 39.
    L. Schutte and E. Havinga, Tetrahedron 23, 2281 (1967).CrossRefGoogle Scholar
  41. 40.
    J. C. Andersen and C. B. Reese, J. Chem, Soc. (1963), 1781.Google Scholar
  42. 41.
    H. Kobsa, J. Org. Chem. 27, 2293 (1962).CrossRefGoogle Scholar
  43. 42.
    P. Adams and J. L. Anderson, J. Am. Chem. Soc. 72, 5154 (1950).CrossRefGoogle Scholar
  44. 43.
    P. E. Stevenson, J. Mol. Spectry. 15, 220 (1965).CrossRefGoogle Scholar
  45. 44.
    G. Porter and E. Strachan, Trans. Faraday Soc. 54, 1595 (1958).CrossRefGoogle Scholar
  46. 45.
    S. P. McGlynn, T. Azumi and M. Kinoshita, “Molecular Spectroscopy of the Triplet State,” Prentice-Hall, Englewood Cliffs, N. J., 1969, p. 159.Google Scholar
  47. 46.
    J. I. Dunlop, Photochem. and Photobiol. 5, 227 (1966).CrossRefGoogle Scholar
  48. 47.
    D. B. Wetlaufer in “Advances in Protein Chemistry,” C. B. Anfinsen, et al., Vol. 17, Academic Press, New York, N. Y., 1962, p. 303.Google Scholar
  49. 48.
    W. J. McCarthy and J. D. Winefordner in “Fluorescence, Theory, Instrumentation and Practice,” G. G. Guilbault, ed., Marcel Dekker, Inc., New York, N. Y., 1967, p. 412.Google Scholar
  50. 49.
    R. A. Keller, in “Molecular Luminescence,” E. C. Lim, ed., W. A. Benjamin, N. Y., 1969, p. 453.Google Scholar
  51. 50.
    G. Dobson and L. I. Grossweiner, Rad. Res. 23, 290 (1964).CrossRefGoogle Scholar
  52. 51.
    L. Pauling, “Nature of the Chemical Bond,” Cornell University Press, Ithaca, N. Y., 1948, p. 204.Google Scholar
  53. 52.
    W. A. Gibbons, G. Porter and M. I. Savadatti, Nature 206, 1355 (1965).CrossRefGoogle Scholar
  54. 53.
    Yu. A. Vladimirov and E. E. Fesenko, Photochem. Photobiol. 8, 209 (1968).CrossRefGoogle Scholar
  55. 54.
    A. Maybeck and J. H. Windle, Photochem. Photobiol. 10, 1 (1969).CrossRefGoogle Scholar
  56. 55.
    K. Watanabe, J. Chem. Phys. 26, 542 (1957).CrossRefGoogle Scholar
  57. 56.
    W. Gordy, W. B. Ard and H. Shields, Proc. Nat. Acad. Sci. U.S. 41, 983 (1955).CrossRefGoogle Scholar
  58. 57.
    C. J. Seliskar, D. C. Turner et al., in “Molecular Luminescence,” E. C. Lim, ed., W. A. Benjamin, N. Y. 1969, p. 677.Google Scholar
  59. 58.
    L. I. Grossweiner and W. A. Mulac, Rad. Res., 10, 515 (1959).CrossRefGoogle Scholar
  60. 59.
    I. Fischer-Hjalmars and M. Sundbon, Acta Chem. Scand. 22, 607 (1968).CrossRefGoogle Scholar
  61. 60.
    H. B. Steen, Photochem. Photobiol. 9, 479 (1969).CrossRefGoogle Scholar
  62. 61.
    E. Yeargers and L. Augenstein, Biophys. J. 5, 690 (1965).CrossRefGoogle Scholar
  63. 62.
    Yu. A. Vladimirov and E. A. Burstein, Biofizika 5, 385 (1960).Google Scholar
  64. 63.
    W. C. Price and A. D. Walsh, Proc. Royal Soc. A191, 22 (1947).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • R. F. Reinisch
    • 1
  • H. R. Gloria
    • 1
  • G. M. Androes
    • 1
  1. 1.Ames Research CenterNASAMoffett FieldUSA

Personalised recommendations