Advertisement

Quantum Mechanically Based Rules for Thermal and Photochemical Reactions

  • E. M. Evleth
Conference paper

Abstract

There are at least three approaches necessary for the application of quantum mechanical considerations to the analysis of the mechanisms of thermal and photochemical reactions. These approaches are: i) generalized rules for correlating the electronic states of the starting materials and the products; ii) direct computational estimates of the potential energy surfaces and other properties of the systems under consideration, and iii) qualitative rules by which the possible shapes of the potential energy surfaces can be predicted or the possible course of the reactions can be rationalized. Approaches i and iii provide a theoretical base for building the necessary qualitative understanding of thermal and photochemical reactions and ii provides a route for partially testing that understanding. Since there is no comprehensive discussion of all these factors in the literature this paper will attempt to correlate these approaches with what has been found to date. No attempt is made, however, to give a complete review of the literature on this subject. Particular emphasis has been given to the recent literature.

Keywords

Potential Energy Surface Triplet State Photochemical Reaction Configuration Interaction Bond Dissociation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Herzberg, “Spectra of Diatomic Molecules,” Chapt. 3, D. Van Nostrand (1950).Google Scholar
  2. 2.
    G. Herzberg, “Electronic Spectra of Polyatomic Molecules,” Chapt. 3, D. Van Nostrand (1966).Google Scholar
  3. 3.
    Ref. 2, pp. 429–437.Google Scholar
  4. 4.
    J. R. McNesby and H. Okabe, “Advances in Photochemistry,” Vol. 3, p. 185, Interscience (1964).Google Scholar
  5. 5.
    C. A. Coulson, “Reactivity of the Photo-excited Organic Molecule,” pp. 1–49, Proc. of the 13th Conference of the Solvay Institute (1965), Interscience (1967).Google Scholar
  6. 6.
    D. Phillips, J. Lemaire, C. S. Burton, W. A. Noyes, Jr., “Advances in Photochemistry,” Vol. 5, pp. 329–364, Wiley and Sons (1968).Google Scholar
  7. 7.
    R. A. Young, G. Black, and T. G. Slanger, J. Chem. Phys., 48, 2067 (1968).CrossRefGoogle Scholar
  8. 8.
    J. G. Calver and J. N. Pitts, Jr., “Photochemistry,” pp. 622–624, Wiley and Sons (1966).Google Scholar
  9. 9.
    J. S. Swenton, J. Chet. Ed., 46, 217 (1969).Google Scholar
  10. 10.
    C. H. Bibart, M. C. Rockley and F. S. Wettack, J. Am. Chem. Soc., 91, 2802 (1969).CrossRefGoogle Scholar
  11. 11.
    E. J. Baum, L. D. Hess, J. R. Wyatt and J. N. Pitts, Jr., Ibid, 91, 2461 (1969).Google Scholar
  12. 12.
    H. L. Hyndman, B. M. Monroe, and G. S. Hammond, Ibid, 91, 2852 (1969)Google Scholar
  13. 13.
    J. Saltiel, K. R. Neuberger, and M. Wrighton, Ibid, 91, 3658 (1969).Google Scholar
  14. 14.
    N. E. Lee and E. K. C. Lee, J. Chem. Phys., 50, 2094 (1969).CrossRefGoogle Scholar
  15. 15.
    H. E. Zimmerman and R. W. Elser, J. Am. Chem. Soc., 91, 887 (1969).CrossRefGoogle Scholar
  16. 16.
    P. S. Mariano, ibid, 91, 1718 (1969).Google Scholar
  17. 17.
    A. Padwa, W. Eisenhardt, R. Gruber and D. Pashayan, Ibid, 91, 1857 (1969).Google Scholar
  18. 18.
    J. N. Pitts, Jr., D. R. Burley, J. C. Mani and A. P. Broadbent, Ibid, 90, 5902 (1968).Google Scholar
  19. 19.
    H. E. Zimmerman and K. G. Hancok, Ibid, 90, 3749 (1968).Google Scholar
  20. 20.
    T. Förster, Angew, Chemie (Eng. Ed.), 8, 333 (1969).CrossRefGoogle Scholar
  21. 21.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, “Molecular Spectroscopy of the Triplet State,” pp. 88–90, Prentice Hall (1969).Google Scholar
  22. 22.
    H. Morrison and R. Kleopfer, J. Am. Chem. Soc., 90, 5037 (1968).CrossRefGoogle Scholar
  23. 23.
    P. J. Wagner and D. J. Buckeck, Ibid, 90, 6531 (1968).Google Scholar
  24. 24.
    H. Ymazaki and R. J. Cventanovic, Ibid, 91, 521 (1969).Google Scholar
  25. 25.
    N. J. Turro and P. A. Wriede, Ibid, 91, 6863 (1969).Google Scholar
  26. 26.
    E. L. Wehry and L. B. Rogers in “Fluorescence and Phosphorescence Analysis,” ed. D. M. Hercules, pp. 125–135.Google Scholar
  27. 27.
    H. E. Zimmerman and R. R. Sandel, J. Am. Chem. Soc., 85, 915 (1963).CrossRefGoogle Scholar
  28. 28.
    A Zweig, Advances in Photochemistry, Vol. 6, pp. 425–449, Wiley and Sons (1969).Google Scholar
  29. 29.
    J. P. Paris, ref. 26, pp. 190–193.Google Scholar
  30. 30.
    H. S. Pilloff and A. C. Albrecht, J. Chem. Phys., 49, 4891 (1968).CrossRefGoogle Scholar
  31. 31.
    E. M. Evleth, Chem. Phys. Letters, 3, 122 (1969).CrossRefGoogle Scholar
  32. 32.
    P. Borrell and H. H. Greenwood, Proc. Roy. Soc., (London) A298, 453 (1967).CrossRefGoogle Scholar
  33. 33.
    K. Inuzuka and R. S. Becker, Nature, 219, 383 (1968).CrossRefGoogle Scholar
  34. 34.
    B. S. Rabinovitch, J. E. Douglas and F. S. Loonly, J. Chem. Phys. 20, 1807 (1952).CrossRefGoogle Scholar
  35. 35.
    S. W. Benson, “The Foundations of Chemical Kinetics,” Table XI.3, p. 254, McGraw-Hill (1960).Google Scholar
  36. 36.
    The issue of the possible singlet route for photo-cis-transisomerization is not completely resolved for the butadienes and stilbenes. Experiments to date that it does occur, see Refs. 37 and 38.Google Scholar
  37. 37.
    R. Srinivasan, J. Am. Chem. Soc., 90, 4498 (1968).CrossRefGoogle Scholar
  38. 38.
    J. Saltiel and E. D. Megarity, Ibid, 91, 1265 (1969)Google Scholar
  39. 39.
    N. J. Turro, “Molecular Photochemistry,” pp. 212–216, W. A. Benjamin (1967).Google Scholar
  40. 40.
    W. G. Dauben, Ref. 5, p. 174.Google Scholar
  41. 41.
    G. S. Hammond, Ref. 5, pp. 313–315.Google Scholar
  42. 42.
    W. Th. A. M. Van der Lugt and L. J. Oosterhoff, Chem. Comm., 1235 (1968).Google Scholar
  43. 43.
    G. M. J. Schmidt, Ref. 5, pp. 268–277.Google Scholar
  44. 44.
    W. F. Richey and R. S. Becker, J. Chem. Phys., 49, 2092 (1968).CrossRefGoogle Scholar
  45. 45.
    A. G. Wahl, P. J. Bertoncini, G. Das, and T. L. Gilbert, Int. J. Quant. Chem. 1, 123 (1967).CrossRefGoogle Scholar
  46. 46.
    B. Levy and G. Berthier, ibid, 2, 307 (1967).Google Scholar
  47. 47.
    A. Veillard and E. Clementi, Theoret. Chim. Acta (Berl.), 13, 7, 133 (1967).CrossRefGoogle Scholar
  48. 48.
    R. J. Buenker and S. D. Peyerimoff, Ibid, 12, 183 (1968).Google Scholar
  49. 49.
    R. C. Morrison and G. A. Gallup, J. Chem. Phys., 50, 1214 (1969).CrossRefGoogle Scholar
  50. 50.
    W. A. Goddard, Phys. Rev., 157, 73, 81 (1967).CrossRefGoogle Scholar
  51. 51.
    J. P. Malrieu, Photochem. and Photobiol., 7, 531 (1968).CrossRefGoogle Scholar
  52. 52.
    N. L. Allinger and T. S. Stuart, J. Chem. Phys., 47, 4611 (1967).CrossRefGoogle Scholar
  53. 53.
    E. M. Evleth, ibid., 46, 4151 (1967).Google Scholar
  54. 54.
    S. D. Peyerimoff and R. J. Buenker, Ibid, 49, 2261 (1968).Google Scholar
  55. 55.
    R. J. Buenker and L. L. Whitten, Ibid, 49, 5381 (1968).Google Scholar
  56. 56.
    S. D. Peyerimoff and R. J. Buenker, Ibid, 49, 2473 (1968).Google Scholar
  57. 57.
    R. Hoffmann, ibid, 39, 1397 (1964)Google Scholar
  58. 58.
    R. J. Buenker, Ibid, 48, 1368 (1968).Google Scholar
  59. 59.
    U. Kaldor and I. Shavitt, 48, 191 (1968).Google Scholar
  60. 60.
    D. T. Clark and D. R. Armstrong, Theoret. Chim. Acta, 13, 365 (1969).CrossRefGoogle Scholar
  61. 61.
    J. J. McCullough, H. Ohorodnyk and D. P. Santry, Chem. Comm., 570 (1969).Google Scholar
  62. 62.
    G. Feier, Theoret. Chim. Acta, 12, 412 (1968).CrossRefGoogle Scholar
  63. 63.
    A. C. Hopkinson, R. A. McClelland, K. Yates and I. G. Csizmadia, Ibid, 13, 81 (1969).Google Scholar
  64. 64.
    A. S. N. Murthy, R. E. Davis, and C. N. R. Rao, Ibid, 13, 81 (1969).Google Scholar
  65. 65.
    D. B. Chesnut and R. W. Moseley, Ibid, 13, 230 (1969).Google Scholar
  66. 66.
    J. M. Lehn, B. Munsch, P. Millie, and A. Veillard, Ibid, 13, 313 (1969).Google Scholar
  67. 67.
    K. Morokuma and L. Pedersen, J. Chem. Phys., 48, 3275 (1968).CrossRefGoogle Scholar
  68. 68.
    E. Clementi and A. Clementi, Ibid, 47, 3837 (1967).Google Scholar
  69. 69.
    J. A. Pople, D. P. Santry and G. A. Segal, Ibid, 43, 5129 (1965).Google Scholar
  70. 70.
    H. H. Jaffe, Acc. of Chem. Res., 2, 136 (1969).CrossRefGoogle Scholar
  71. 71.
    M. J. S. Dewar in “Molecular Orbital Theory of Organic Chemistry”.Google Scholar
  72. 72.
    C. Giessner-Prettre and A. Pullman, Theoret. Chim. Acta, 13, 265 (1969).CrossRefGoogle Scholar
  73. 73.
    J. Del Bene and H. H. Jaffee, J. Chem. Phys., 48, 1807, 4050 (1968).CrossRefGoogle Scholar
  74. 74.
    More recent calculations including doubly excited configurations by these authors are in press.Google Scholar
  75. 75.
    M. A. Robb and I. G. Csizmadia, J. Chem. Phys., 50, 1819, (1969).CrossRefGoogle Scholar
  76. 76.
    For a discussion of Walsh’s rules see Chapter 3, Ref. 2.Google Scholar
  77. 77.
    H. C. Longuet-Higgins and E.. Abrahamson, J. Am. Chem. Soc., 2045 (1965).Google Scholar
  78. 78.
    R. B. Woodward and R. Hoffmann, Ibid, 87, 395 (1965).Google Scholar
  79. 79.
    R. Hoffmann and R. B. Woodward, Acc. of Chem. Res., 1, 17 (1968).CrossRefGoogle Scholar
  80. 80.
    J. J. Volmer and K. L. Servis, J. Chem. Ed., 45, 214 (1968).Google Scholar
  81. 81.
    G. B. Gill, Quart. Rev., 22, 338 (1968).CrossRefGoogle Scholar
  82. 82.
    Ref. 2, pp. 533–535.Google Scholar
  83. 83.
    E. M. Evleth, J. Am. Chem. Soc., 89, 6445 (1967).CrossRefGoogle Scholar
  84. 84.
    H. E. Zimmerman, “Advances in Photochemistry,” Vol. 1, pp. 183–207 Interscience (1963).Google Scholar
  85. 85.
    Ref. 39, A discussion of the limitation of the use of such structures, pp. 162–170 and pp.237–241.Google Scholar
  86. 86.
    H. E. Zimmerman, R. W. Binkely, J. J. McCullough, and G. Zimmerman, J. Am. Chem. Soc., 89, 6589 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • E. M. Evleth
    • 1
  1. 1.Division of Natural SciencesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations