Reduction-Oxidation Activities of Plant Plasmamembranes

  • J. O. D. Coleman
  • J. D. C. Chalmers
Part of the NATO ASI Series book series (NSSA, volume 7)


Plant cells catalyse a number of reduction-oxidation (redox) reactions at the cell surface. There is good evidence that the plasmamembrane contains a redox charge transfer system which conducts electrons from internal reductants to external oxidants such as non-permeant anionic ferricyanide. This ferricyanide reductase activity which is associated with a net acidification of the external medium has been observed in cultured cells (Craig and Crane, 1981; Barr, Crane and Craig, 1984; Chalmers, Coleman and Walton, 1984) in roots (Federico and Giartosio, 1983; Rubinstein and Stern, 1986; Sijmons, Lanfermeijer, DeBoer, Prins and Bienfait, 1984) and in leaf cells (Ivankina, Novak and Miclashevich, 1984; Neufeld and Bown, 1987).


Redox System Fluorescein Diacetate Carrot Cell Proton Extrusion Ferricyanide Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askerlund, C., Larsson, C., Widell, S., and M$ller, I. M., 1987, NAD(P)H oxidase and peroxidase activities in purified plasmamembranes from cauliflower inflorescences, Physiol. Plant., 71: 9.CrossRefGoogle Scholar
  2. Barr, R., Crane, F. L., and Craig, T. A., 1984, Transmembrane ferricyanide reduction in tobacco callus cells, Plant Growth Regul., 2: 243.Google Scholar
  3. Chalmers, J. D. C., and Coleman, J. O. D., 1983, Ethanol stimulated proton extrusion by cells of carrot ( Daucus carota L.) grown in suspension culture, Biochem. Int., 7: 785.Google Scholar
  4. Chalmers, J. D. C., Coleman, J. O. D., and Walton, N. J., 1984, Use of an electrochemical technique to study plasmamembrane redox reactions in cultured cells of Daucus carota L., Plant Cell Reports, 3: 243.CrossRefGoogle Scholar
  5. Chalmers, J. D. C., and Coleman, J. O. D., 1986, The effect of osmotic stress on trans-plasma membrane electron transport in plants, Biochem. Soc. Trans., 14: 108.Google Scholar
  6. Chalmers, J. D. C., Coleman, J. O. D., and Hawes, C. R., 1986, Oxidation of exogenous NAD(P)H by isolated carrot protoplasts is catalysed by isoperoxidase, Biochem. Soc. Trans., 14: 734.Google Scholar
  7. Craig, T. A., and Crane, F. L., 1981, Evidence for a transplasmamembrane electron transfer system in plant cells, Proc. Indiana Acad. Science, 90: 150.Google Scholar
  8. Craig, T. A., and Crane, F. L., 1982, Hormonal control of a transplasmamembrane electron transport system in plant cells, Proc. Indiana Acad. Science, 91: 150.Google Scholar
  9. Federico, R., and Giartosio, C. E., 1983, A transplasmamembrane electron transport system in maize roots, Plant Physiol., 73: 182.PubMedCrossRefGoogle Scholar
  10. Ivankina, N. G., Novak, V. A., and Miclashevich, A. I., 1984, Redox reactions and active H+ transport in the plasmalemma of Elodea leaf cells, in: “Membrane transport in Plants,” W. J. Cram, K. Janacek, R. Rybova, and S. Sigler, eds., J. Wiley and Sons, England.Google Scholar
  11. Kinraide, T. B., and Wyse, R. E., 1986, Electrical evidence for enhanced proton extrusion by reduced turgor in sugar beet tap root, Plant Physiol. Suppl., 80: 57.Google Scholar
  12. Lin, W., 1984, Further characterization on the transport properties of plasmalemma NADH oxidation system in isolated corn root protoplasts, Plant. Physiol., 74: 219.CrossRefGoogle Scholar
  13. Neufeld, E., and Bown, A. W., 1987, A plasmamembrane redox system and proton transport in isolated mesophyll cells, Plant Physiol., 83: 895.PubMedCrossRefGoogle Scholar
  14. Rubinstein, B., and Stern, A. I., 1986, Relationship of transplasmalemma redox activity to proton and Solute transport by roots of Zea mays, Plant Physiol., 80: 805.PubMedCrossRefGoogle Scholar
  15. Reinhold, L., Seiden, A., and Volokita, M., 1984, Is modulation of the rate of proton pumping a key event in osmoregulation?, Plant Physiol., 75: 846.PubMedCrossRefGoogle Scholar
  16. Sijmons, P. C., Lanfermeijer, F. C., De Boer, A. H., Prins, H. B. A., and Bienfait, H. F., 1984, Depolarisation of cell membrane potential during transplasma membrane electron transfer to extracellular electron acceptors in iron deficient roots of Phaseolus vulgaris L., Plant Physiol., 76: 943.PubMedCrossRefGoogle Scholar
  17. Slabas, A. R., Powel, A. J., and Lloyd, C. W., 1980, An improved procedure for the isolation and purification of protoplasts from carrot suspension cultures, Planta, 147: 283.CrossRefGoogle Scholar
  18. Thom, M., and Maretski, A., 1985, Evidence for a plasmalemma redox system in sugar cane, Plant Physiol. 77: 873.PubMedCrossRefGoogle Scholar
  19. Widholm, J. M. 1972, The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol., 47: 184.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. O. D. Coleman
    • 1
  • J. D. C. Chalmers
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations