Roles for Plasma Membrane Redox Systems in Cell Growth

  • D. James Morré
  • Andrew Brightman
  • Juan Wang
  • Rita Barr
  • Frederick L. Crane
Part of the NATO ASI Series book series (NSSA, volume 7)


Correlative evidence from cultured mammalian cells suggests that growth and plasma membrane redox activities are somehow related. This comes in part from studies with hormones, growth factors and anticancer drugs where substances that stimulate or inhibit growth respectively stimulate or inhibit plasma membrane redox activities to corresponding degrees and vice versa (Crane et al., 1985). One possibility is that plasma membrane redox activities are somehow involved in cell cycle control but the mechanisms by which that regulation might be achieved remain obscure. In this report, we have extended the observations from mammalian cells to elongating plant tissues and regulation by auxin hormones where growth is due primarily, if not exclusively, to an increase in cell size.


NADH Oxidase Plasma Membrane Vesicle NADH Oxidase Activity Soybean Hypocotyl Isonicotinoyl Hydrazone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronson, P. S., Nee, J., and Suhm, M. A. (1982) Modifier role of internal H+ in activating the Na-H exchanger in renal microvillus membrane vesicles. Nature 299, 161–163.PubMedCrossRefGoogle Scholar
  2. Barnes, D. and Sato, G. (1980) Serum-free cell culture: a unifying approach. Cell 22, 649–655.PubMedCrossRefGoogle Scholar
  3. Barr, R., Craig, T. A., and Crane, F. L. (1985) Transmembrane ferricyanide reduction in carrot cells. Biochim. Biophys. Acta 812, 49–54.PubMedCrossRefGoogle Scholar
  4. Barr, R., Sandelius, A. S., Crane, F. L. and Morré, D. J. (1986) Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrophoresis. Biochim. Biophys. Acta 582, 254–261.Google Scholar
  5. Basset, P., Quesneau, Y., and Zwiller, J. (1986) Iron induced L1210 growth: Evidence of a transferrin independent iron transport. Cancer Res. 46, 1644–1647.PubMedGoogle Scholar
  6. Brightman, A. O., Barr, R., Crane, F. L., and Morré, D. J. (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol. (in press).Google Scholar
  7. Buckhout, T. J., and Hrubec, T. C. (1986) Pyrimidine nucleotide-dependent ferricyanide reduction associated with isolated plasma membranes of maize (Zea mays. L.) roots. Protoplasma 135, 144–145.CrossRefGoogle Scholar
  8. Busa, W. B., and Nuccitelli, R. (1984) Metabolic regulation via intracellular pH. Am. J. Physiol. 246, R409 - R438.PubMedGoogle Scholar
  9. Cleland, R. E., and Rayle, D. L. (1978) Auxin, H+-excretion and cell elongation. Bot. Mag. ( Tokyo) Spec. Issue 1, 125–139.Google Scholar
  10. Crane, F. L., Barr, R., Craig, T. A., and Misra, P. C. (1984) Growth control by proton pumping plasma membrane redox. Proc. Plant Growth Regul. Soc. Am. 11, 87–95.Google Scholar
  11. Crane, F. L., Sun, I., Clark, M. G., Grebing, G., and Low, H. (1985) Transplasma membrane redox systems in growth and development. Biochim. Biophys. Acta 811, 233–264.PubMedCrossRefGoogle Scholar
  12. Ellem, K. A. 0., and Kay, G. F. (1983) Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells. Biochem. Biophys. Res. Commun. 112, 183–190.PubMedCrossRefGoogle Scholar
  13. Felle, H. (1987) Proton transport and pH control in Sinapis alba root hairs: A study carried out with double-barrelled microelectrodes. J. Exp. Bot. 38, 340–354.CrossRefGoogle Scholar
  14. Gayda, D. P., Crane, F. L., Morré, D. J. and Low, H. (1977) Hormone effects on NADH-oxidizing enzymes of plasma membranes of rat liver. Proc. Indiana Acad. Sci. for 1976 86, 385–390.Google Scholar
  15. Ghani, Q. P., and Hollenberg, M. (1978) Poly(adenosine diphosphate ribose) metabolism and regulation of myocardial cell growth by oxygen. Biochem. J. 170, 387–394.PubMedGoogle Scholar
  16. Goldenberg, H., Crane, F. L., and Morré, D. J. (1979) NADH oxido-reductase of mouse liver plasma membranes. J. Biol. Chem. 254, 2491–2498.PubMedGoogle Scholar
  17. Landschulz, W., Theslaff, I., and Ekblom, P. (1984) A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation. J. Cell Biol. 98, 596–601.PubMedCrossRefGoogle Scholar
  18. Löw, H., and Crane, F. L. (1976) Hormone regulated redox function in plasma membranes. FEBS Lett. 68, 157–159.PubMedCrossRefGoogle Scholar
  19. Löw, H., Sun, I. L., Navas, P., Grebing, C., Crane, F. L., and Morré, D. J. (1986) Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system. Biochem. Biophys. Res. Commun. 139, 1117–1123.PubMedCrossRefGoogle Scholar
  20. Moller, I. M., and Lin, W. (1986) Membrane-bound NAD(P)H dehydrogenases in higher plant cells. Ann. Rev. Plant Physiol. 37 309–334.CrossRefGoogle Scholar
  21. Moolenaar, W. H. (1986) Cytoplasmic pH and free Ca in the action of growth factors. In: Oncogenes and Growth Control’, Kahn, P., and Graf, T., eds. Springer-Verlag, Berlin/Heidelberg/New York, pp. 170–176.CrossRefGoogle Scholar
  22. Morré, D. J., Navas, P., Penel, C., and Castillo, F. J. (1986) Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: Role in acidification of cytoplasm? Protoplasma 133, 195–197.CrossRefGoogle Scholar
  23. Morré, D. J., Auderset, G., Penel, C., and Canut, H. (1987a) Cytochemical localization of NADH-ferricyanide oxido-reductase in hypocotyl segments and isolated membrane vesicles of soybean. Protoplasma 140, 133–140.CrossRefGoogle Scholar
  24. Morré, D. J., Crane, F. L., Sun, I. L., and Navas, P. (1987b) The role of ascorbate in biomembrane energetics. Ann. N. Y. Acad. Sci. 498, 153–171.PubMedCrossRefGoogle Scholar
  25. Morré, D. J., Crane, F. L., Barr, R., Penel, C., and Wu, L.-Y. (1988a) Inhibition of plsma membrane redox activities and elongation growth of soybean. Physiol. Plant. 72, 236–240.CrossRefGoogle Scholar
  26. Morré, D. J., Brightman, A. O., Wu, L.-Y., Barr, R., Leak, B., and Crane, F. L. (1988b) Role of plsma membrane redox activities in elongation growth in plants. Physiol. Plant. (in press).Google Scholar
  27. Navas, P., Sun, I. L., Morré, D.J., and Crane, F.L. (1986) Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem. Biophys. Res. Commun. 135, 110–115.PubMedCrossRefGoogle Scholar
  28. Ponca, R., Brady, R. W., Wilozykska, A., and Schulman, H. M. (1984) The effect of various chelating agents on the mobilization of iron from reticulocytes in the presence and absence of pyridoxal isonicotinoyl hydrazone. Biochim. Biophys. Acta 802, 477–489.CrossRefGoogle Scholar
  29. Rogers, K.E., and Tokes, Z. A. (1984) Novel mode of cytotoxicity obtained by coupling inactive anthracycline to a polymer. Biochem. Pharmacol. 33, 605–608.PubMedCrossRefGoogle Scholar
  30. Sandelius, A. S., Barr, R., Crane, F. L., and Morré, D. J. (1987) Redox reactions of plasma membranes isolated from soybean hypocotyls by phase partition. Plant Sci. 48, 1–10.CrossRefGoogle Scholar
  31. Solomon, D., and Mishkin, S. (1982) Tri-iodothyronine (T3) stimulates the growth of Morris hepatoma cells grown in culture. Biochem. Biophys. Res. Commun. 105, 1611–1617.PubMedCrossRefGoogle Scholar
  32. Sun, I. L., and Crane, F. L. (1981) Transplasmalemma NADH dehydrogenase is inhibited by actinomycin D. Biochem. Biophys. Res. Commun. 101, 68–75.PubMedCrossRefGoogle Scholar
  33. Sun, I. L., and Crane, F. L. (1984a) The antitumor drug, cis diaminedichloro-platinum, inhibits trans plsma membrane electron transport in HeLa cells. Biochem. Intern. 9, 299–306.Google Scholar
  34. Sun, I. L., and Crane, F. L. (1984b) Effects of anthracycline compounds on transmembrane redox function of cultured HeLa cells. Proc. Indiana Acad. Sci. for 1983 93, 267–274.Google Scholar
  35. Sun, I. L., and Crane, F. L. (1985) Bleomycin control of transplasma membrane redox activity and proton movement in HeLa cells. Biochem. Pharmacol. 34, 617–623.PubMedCrossRefGoogle Scholar
  36. Sun, I.L., Crane, F. L., Löw, H., and Grebing, C. (1984a) Transplasma membrane redox stimulates HeLa cell growth. Biochem. Biophys. Res. Commun. 125, 649–654.Google Scholar
  37. Sun, I. L., Crane, F. L., Löw, H., and Grebing, C. (1984b) Inhibition of plasma membrane NADH dehydrogenase by adriamycin and related anthracycline antibiotics. J. Bioenergetics Biomemb. 16, 209–211.CrossRefGoogle Scholar
  38. Sun, I. L., Morré, D. J., Crane, F. L., Safranski, K., and Croze, E. M. (1984c) Monodehydroascorbate as an electron acceptor for NADH reduction by coated vesicle and Golgi apparatus fractions of rat liver. Biochim. Biophys. Acta 797, 266–275.PubMedCrossRefGoogle Scholar
  39. Sun, I. L., Putnam, J. E., and Crane, F. L. Control of cell growth by transplasmalemma redox: Stimulation of HeLa cell growth by impermeable oxidants. (1985) Proc. Indiana Acad. Sci. for 1984 94, 407–416.Google Scholar
  40. Sun, I. L., Crane, F. L., and Chou, J. Y. (1986) Modification of transmembrane electron transport activity in plasma membranes of Simian virus 40 transformed pineal cells. Biochim. Biophys. Acta 886, 327–336.PubMedCrossRefGoogle Scholar
  41. Sun, I. L., Garcia-Canero, R., Liu, W., Toole-Simms,W., Crane, F. L., Morré, D. J., and Löw, H. (1987) Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells. Biochem. Biophys. Res. Commun. 145, 465–473.CrossRefGoogle Scholar
  42. Tritton, R. R., and Yee, G. (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217, 248–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • D. James Morré
    • 1
    • 2
  • Andrew Brightman
    • 1
    • 2
  • Juan Wang
    • 1
    • 2
  • Rita Barr
    • 1
    • 2
  • Frederick L. Crane
    • 1
    • 2
  1. 1.Department of Medicinal ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations