Relationship between NAD+/NADH Levels and Animal Cell Growth

  • P. Navas
  • I. L. Sun
  • D. J. Morré
  • F. L. Crane
Part of the NATO ASI Series book series (NSSA, volume 7)


Studies have shown a close relationship between pyridine nucleotide levels and the proliferating stage of some tissues1. Also NAD(H) and NADP(H) pools have been studied as a function of growth in both normal and SV40 transformed 3T3 cells2,3. Decrease of NAD(H) levels in rat liver follows carcinogen (2-acetylaminofluorene) administration4. Therefore, it is reasonable to postulate that pyridine nucleotide pools are important in the control of cell division2,3,5. The regulation of the biosynthesis of pyridine nucleotides is complex since several alternative pathways have been described in mammalian cells3. Here, we show evidence that levels of pyridine nucleotides and relative redox states are altered in cells growing under the stimulation of growth factors, especially as a result of both short- and long-term treatments with external electron acceptors which react with the transplasma membrane redox system 5.


HeLa Cell Pyridine Nucleotide NADH Concentration External Electron Acceptor Diferric Transferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.L. Jedeikin, and S. Weinhouse, Metabolism of neoplastic tissue. VI. Assay of oxidized and reduced diphosphopyridine nucleotide in normal and neoplastic tissues, J. Biol. Chem. 213: 271 (1955).PubMedGoogle Scholar
  2. 2.
    J.P. Schwarth, J.V. Passoneau, G.S. Johnson and I. Pastan, The effect of growth conditions on NAD+ and NADH concentrations and the NAD+:NADH ratio in normal and transformed fibroblasts, J. Biol. Chem. 249: 4138 (1974).Google Scholar
  3. 3.
    E.L. Jacobson, and M.K. Jacobson, Pyridine nucleotide levels as a function of growth in normal and transformed 3T3 cells, Arch. Biochem. Biophys. 175: 627 (1976).CrossRefGoogle Scholar
  4. 4.
    I.L. Sun, W. MacKellar, F.L. Crane, R. Barr, W.L. Elliot, R.L. Varnold, P.F. Heinstein and D.J. Morré, Decreased NADH-oxidoreductase activities as an early response in rat liver to the carcinogen 2-acetylaminofluorene, Cancer Res. 45: 157 (1985).PubMedGoogle Scholar
  5. 5.
    F.L. Crane, I.L. Sun, M.G. Clark, C. Grebing and H. Löw, Transplasma-membrane redox systems in growth and development, Biochin. Biophys. Acta 811: 233 (1985).CrossRefGoogle Scholar
  6. 6.
    M.G. Clark, E.J. Patrick, G.S. Patten, F.L. Crane, H. Löw and C. Grebing, Evidence for the extracellular reduction of ferricyanide by rat liver, Biochem. J. 200: 565 (1981).PubMedGoogle Scholar
  7. 7.
    F.L. Crane, H. Roberts, A.W. Linnane, and H. Löw, Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae, J. Bionerg. Biomemb. 14: 191 (1982).CrossRefGoogle Scholar
  8. 8.
    T.A. Craig and F.L. Crane, Evidence for a transplasma membrane electron transport system in plant cells, Proc. Indiana Acad. Sci. 90: 150 (1981).Google Scholar
  9. 9.
    F.L. Crane, H. Löw and M.G. Clark, Plasma membrane redox enzymes, in: “Enzymes of Biological Membranes” A. Martinosi ed., Vol. 4, Plenum, New York (1985).Google Scholar
  10. 10.
    T.L. Dormandy and Z. Zarday, The mechanism of insulin action: The immediate electrochemical effects of insulin on red cell systems, J. Physiol. 180: 684 (1965).PubMedGoogle Scholar
  11. 11.
    M.G. Clark, E.J. Patrick and F.L. Crane, Properties and regulation of a transplasma membrane redox system in rat liver, Biochem. J. 204: 795 (1982).PubMedGoogle Scholar
  12. 12.
    F.L. Crane, H.E. Crane, I.L. Sun, W.C. MacKellar, C. Grebing and H. Löw, Insulin control of a transplasma membrane NADH dehydrogenase in erythrocyte membranes, J. Bioenerg. Biomemb. 14: 425 (1982).CrossRefGoogle Scholar
  13. 13.
    H. Goldenberg, Plasma membrane redox activities, Biochim. Biophys. Acta 694: 203 (1982).CrossRefGoogle Scholar
  14. 14.
    D.Barnes and G. Sato, Serum-free cell culture: a unifying approach, Cell 22: 649 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    M-S. Tsao, G.H.S. Sanders and J.W. Grisham, Regulation of growth of cultured hepatic epithelial cells by transferrin, Exp. Cell Res. 171: 52 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    I.L. Sun, P. Navas, F.L. Crane, D.J. Morré and H. Löw, NADH diferric transferrin reductase in liver plasma membrane, J. Biol. Chem. 262: 15915 (1987).PubMedGoogle Scholar
  17. 17.
    K.A.O. Ellem and G.F. Kay, Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells, Biochem. Biophys. Res. Commun. 112: 183 (1983).CrossRefGoogle Scholar
  18. 18.
    I.L. Sun, F.L. Crane, C. Grebing and H. Löw, Transmembrane redox inGoogle Scholar
  19. control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin, Exp. Cell Res. 156: 528 (1985).CrossRefGoogle Scholar
  20. 19.
    I.L. Sun, F.L. Crane, H. Löw and C. Grebing, Transplasma membrane redox stimulates HeLa cell growth, Biochem. Biophys. Res. Commun. 125: 649 (1984).CrossRefGoogle Scholar
  21. 20.
    W.H. Moolenaar, R.Y. Tsien, P.T. van der Saag and S.W. DeLeat, Na /H exchange and cytoplasmic pH in the action of growth factors in human fibroblasts, Nature 304: 645 (1983).PubMedCrossRefGoogle Scholar
  22. 21.
    R.K. Mishra and H. Passow, Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells, J. Membr. Biol. 1: 214 (1969).CrossRefGoogle Scholar
  23. 22.
    I.L. Sun, F.L. Crane, H. Löw and C. Grebing, Inhibition of plasma membrane NADH dehydrogenase by adriamycin and related anthracycline antibiotics, J. Bioenerg. Biomemb. 16: 209 (1984).CrossRefGoogle Scholar
  24. 23.
    P.C. Sijmons, W van der Briel and H Bienfait, Cytosolic NADPH is the electron donor for extracellular ferric reduction in iron-deficient bean roots. Plant Physiol. 75: 219 (1984).PubMedCrossRefGoogle Scholar
  25. 24.
    P. Navas, I.L. Sun, D.J. Morré and F.L. Crane, Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide, Biochem. Biophys. Res. Commun. 135: 110 (1986).CrossRefGoogle Scholar
  26. 25.
    T.R. Tritton and G. Yee, The anticancer drug adriamycin can be cytotoxic without entering cells, Science 217: 248 (1982).CrossRefGoogle Scholar
  27. 26.
    I.L. Sun, P. Navas, F.L. Crane, D.J. Morré and H. Löw, Diferric transferrin reductase in the plasma membrane is inhibited by adriamycin, Biochem. Int. 14: 119 (1987).Google Scholar
  28. 27.
    G. Warburg, Enzymology of cancer cells, N. Engl. J. Med. 296: 486 (1977).CrossRefGoogle Scholar
  29. 28.
    M.K. Jacobson, V. Levi, H. Juarez-Salinas, R.A. Barton and E.L. Jacobson, Effect of carcinogenic N-alkyl-N-nitroso compounds on nicotinamide adenine dinucleotide metabolism, Cancer Res. 40: 1797 (1980).PubMedGoogle Scholar
  30. 29.
    P.W. Rankin, M.K. Jacobson, J.R. Mitchell and D.B. Busbee, Reduction of nicotinamide adenine dinucleotide levels by ultimate carcinogens in human lymphocytes, Cancer Res. 40: 1803 (1980).PubMedGoogle Scholar
  31. 30.
    I.L. Sun, P. Navas, F.L. Crane, J.Y. Chou and H. Löw, Transplasma membrane electron transport is changed in Simian Virus 40 transformed liver cells, J. Bioenerg. Biomemb. 18: 471 (1986).CrossRefGoogle Scholar
  32. 31.
    N.O. Kaplan, Current Topics in Cellular Regulation, R.L. Levine and A. Ginsburg eds., Vol. 26, Academic Press, Hands (1985).Google Scholar
  33. 32.
    O. Hayaishi and K Ueda, Poly(ADP-ribose) and ADP-ribosylation of proteins, Ann. Rev. Biochem. 46: 95 (1977).CrossRefGoogle Scholar
  34. 33.
    M.R. Parnell, P.R. Stone and W.J.D. Whish, ADP-ribosylation of nuclear proteins, Biochem. Soc. Trans. 8: 215 (1980).Google Scholar
  35. 34.
    C.J. Skidmore, M.I. Davies, P.M. Goodwin, H. Halldorsson, P. Lewis, S. Shall and A-A. Zia’ee, The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by -radiation and N-methyl-N-nitrosourea, Eur. J. Biochem. 101: 135 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • P. Navas
    • 1
  • I. L. Sun
    • 2
  • D. J. Morré
    • 3
  • F. L. Crane
    • 2
  1. 1.Departamento de Biología CelularUniversidad de CórdobaCórdobaSpain
  2. 2.Departments of Biological SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Departments of Medicinal Chemistry and PharmacognosyPurdue UniversityWest LafayetteUSA

Personalised recommendations