The Retinoic Acid-Induced Cascade of Events Leading to Granulocyte Differentiation in HL60 through a Postulated GTP-Regulated Inducing Molecule

  • Edward S. Golub
  • Teresita Diaz de Pagan
  • Iris Sun
  • F. L. Crane
Part of the NATO ASI Series book series (NSSA, volume 7)


Cells which are self renewing and whose progeny have the potential of establishing more than one lineage are called stem cells. When stem cells are induced to differentiate they lose their multipotency and establish lineages leading to the development of functional end cells. Of the many differentiating systems which use the strategy of the stem cell (1,2), the hemopoietic system is one of the more intensely studied because the process occurs continuously in the adult animal (see ref 3). The cells of the blood arise from multipotent hemopoietic stem cells which give rise to progenitor cells of committed lineage. The granulocyte-macrophage progenitor cell has at least one more lineage establishment decision to make in the progression toward functional end cells and can be used as a model for decision making in lineage establishment.


Retinoic Acid Proton Release Cellular Retinoic Acid Binding Protein Inosine Monophosphate Dehydrogenase Inhibit Electron Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Levenson, and D. Housman, Cell 25, 5 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    A.K. Hall, Cell 33, 11 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    E.S.Golub, Cell 28, 687 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    C.W. Friend, J.G. Holland and T. Sato, Proc. Nat. Acad. Sci. USA 68, 378 (1971)PubMedGoogle Scholar
  5. Marks and Rifkind Ann. Rev. Biochem.Google Scholar
  6. 5.
    N. Kimura and T.W. Mak, J. Cell. Physiol. 128, 41 (1978).CrossRefGoogle Scholar
  7. 6.
    S.J. Collins, R.C. Gallo and R.E. Gallagher, Nature 270, 347 (1977).PubMedCrossRefGoogle Scholar
  8. 7.
    S.J. Collins, F.W. Ruscetti, R.E. Gallagher and R.C. Gallo, Proc. Nat. Acad. Sci. USA 75; 2485, (1978).Google Scholar
  9. 8.
    T.R. Breitman, S.E. Selonick and S.J. Collins, Proc. Nat. Acad. Sci. USA 77, 2936 (1980).PubMedCrossRefGoogle Scholar
  10. 9.
    G.D. Rovera, D. Sanoli, and D. Damsky, Proc. Nat. Acad. Sci. USA 76, 2779 (1979)PubMedCrossRefGoogle Scholar
  11. J. Lotem and L. Sachs, Proc. Nat. Acad. Sci. USA 76; 5158 (1979);PubMedCrossRefGoogle Scholar
  12. 10.
    A.W. Boyd and D. Metcalf, Leuk. Res. 8, 27 (1984)PubMedCrossRefGoogle Scholar
  13. H. von Melchner and K. Hoffken, J. Cell. Physiol. 125, 573 (1985).CrossRefGoogle Scholar
  14. 11.
    Golub, E.S. and T. Pagan, Prog Clin. and Biol. Res. 226, 235 (1986).Google Scholar
  15. 12.
    R. Lotan and G.L. Nicolson, J. Nat. Cancer. Inst. 59, 1717 (1977)PubMedGoogle Scholar
  16. A.B. Roberts and M.B. Sporn, in M. B. Sporn, A.B. Roberts and D.S. Goodman (eds), The Retinbids vol II, Academic Press, Orlando, FL, pp 209Google Scholar
  17. T.T. Amatruda III and H.P. Koeffler, in M.I. Sherman (ed) Retinoids and Cell Differentiation, CRC Press, Boca Raton,FL, pp79; M.I. Sherman, ibid pp 162.Google Scholar
  18. 13.
    E. Freese, E.B. Freese, E.R. Allen, Z. Olempska-Beer, C. Orrego, A. Varma, and H. Wabiko, Molecular Biology of Microbial Differentiation (1985), Am. Soc. Microbiology pp 194.Google Scholar
  19. 14.
    T. Diaz de Pagan and E.S. Golub in preparation.Google Scholar
  20. 15.
    A. Yen, S.L. Reece nd K.L. Albright, J. Cell. Physiol. 118, 277 (1984).PubMedCrossRefGoogle Scholar
  21. 16.
    F.L. Crane, I.L. Sun, M.G. Clark, C. Grebing and H. Low, Biochim. Biophys Acta 811, 233 (1985)PubMedCrossRefGoogle Scholar
  22. I.L. Sun, W. Liu, F.L. Crane, D.J. Morre and H. Low, submitted.Google Scholar
  23. 17.
    F. Chytil and D. E. Ong, in Sporn et al op cit p89.Google Scholar
  24. 18.
    J. Nugent and S. Clark (eds), Retinoids, differentiation and disease CIBA Foundation Symposium vol 113 (1985), discussion p90.Google Scholar
  25. 19.
    B. Sani, Biochem. Biophys. Res. Comm. 91, 502 (1979)PubMedCrossRefGoogle Scholar
  26. F.E. Cope and R.K. Boutwell, Fed. Proc. 42,1317 (1983) abstract.Google Scholar
  27. 20.
    A. Ladoux, E.J. Cragoe, Jr., B. Gery, J.P. Arbita and c. Frelin, J. Biol. Chem. 26, 811 (1987).Google Scholar
  28. 21.
    G.L’Allemain, A. Francki, E. Cragoe, Jr., and J. Pouyssegur, J. Biol. Chem. 259, 4313 (1984).PubMedGoogle Scholar
  29. 22.
    D.L. Lucas, H.K. Webster and D.G. Wright, J. Clin. Invest. 72, 1889 (1983)PubMedCrossRefGoogle Scholar
  30. D.L. Lucas, R.K. Robins, R.D. Knight, and D.G. Wright, Biochem. Biophys. Res. Comm. 115, 971 (1983)PubMedCrossRefGoogle Scholar
  31. D.G. Wright, Blood 69, 334 (1987)PubMedGoogle Scholar
  32. R.D. Knight, J. Mangum, D.L. Lucas, D.A. Cooney, E.C. Kahn, and D.G. Wright, Blood 69, 634 (1987).PubMedGoogle Scholar
  33. 23.
    H. Hemmi and T.R. Breitman, Biochem. Biophys. Rec. Comm. 109, 669 (1982).CrossRefGoogle Scholar
  34. 24.
    J. H. Anderson and-A.C. Sartorelli, J. Biol. Chem. 243, 4762 (1968).PubMedGoogle Scholar
  35. 25.
    B. Sani, Biochem. Biophys. Res. Comm. 75, 7 (1977)PubMedCrossRefGoogle Scholar
  36. B. Sani and M.K. Donovan, Cancer Res. 39, 2492 (1979).PubMedGoogle Scholar
  37. 26.
    Imaizumi, M, J. Uozumi and T.R. Breitman, Cancer Res. 47, 1434 (1987).PubMedGoogle Scholar
  38. 27.
    Avron, M. and N. Shavit, Anal. Biochem. 6, 549 (1963).PubMedCrossRefGoogle Scholar
  39. 28.
    Albertson,P.A., B. Anderson, C. Larson, and H.E. Akerland, Methods Biochem. Anal. 28, 115 (1982).CrossRefGoogle Scholar
  40. 29.
    Matsumara, H. and S. Miyachi, Methods in Enzymol. 69,465 (19).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Edward S. Golub
    • 1
  • Teresita Diaz de Pagan
    • 1
  • Iris Sun
    • 1
  • F. L. Crane
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations