Cytochrome b561 and the Maintenance of Redox Poise in Secretory Vesicles

  • David Njus
  • Norma J. Kusnetz
  • Yvonne Vivar Pacquing
  • Patrick M. Kelley
Part of the NATO ASI Series book series (NSSA, volume 7)


The membranes of a variety of secretory vesicles contain an electron transfer system which supports redox reactions catalyzed by enzymes contained within the vesicles. These enzymes include two important monooxygenases, dopamine ß-hydroxylase and peptide amidating monooxygenase. Dopamine ßhydroxylase, responsible for the biosynthesis of norepinephrine and epinephrine, is found in catecholamine-storing vesicles such as the chromaffin vesicles of the adrenal medulla. Peptide amidating monooxygenase, responsible for the α-amidation of peptide hormones, is found in peptide-storing vesicles such as those in the pituitary and gut. Both monooxygenases use ascorbic acid to reduce the second atom of molecular oxygen to water. While oxygen will diffuse across the secretory vesicle membrane, ascorbate will not. It is to maintain intravesicular ascorbate that the secretory-vesicle membrane has an electron transfer system.


Electron Transfer Electron Flow Secretory Vesicle Cytochrome B561 Ascorbate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apps, D.K., Boisclair, M.D., Gavine, F.S. and Pettigrew, G.W., 1984, Unusual redox behaviour of cytochrome b-561 from bovine chromaffin granule membranes,, Biochim. Biophys. Acta 764: 8.PubMedCrossRefGoogle Scholar
  2. Bielski, B.H.J., Allen, A.O. and Schwarz, H.A., 1981, Mechanism of disproportionation of ascorbate radicals, J. Am. Chem. Soc. 103: 3516.CrossRefGoogle Scholar
  3. Beers, M.F., Johnson, R.G. and Scarpa, A., 1986, Evidence for an ascorbate shuttle for the transfer of reducing equivalents across chromaffin granule membranes, J. Biol. Chem. 261: 2529.PubMedGoogle Scholar
  4. Butler, J., Davies, D.M. and Sykes, A.G., 1981, Kinetic data for redox reactions of cytochrome c with Fe(CN)5X complexes and the question of association prior to electron transfer, J. Inorg. Biochem. 15: 41.PubMedCrossRefGoogle Scholar
  5. Diliberto, E.J., Jr. and Allen, P.L., 1981, Mechanism of dopamine-ßhydroxylation, J.Biol. Chem. 256: 3385.PubMedGoogle Scholar
  6. Flatmark, T. and Gronberg, M., 1981, Cytochrome b-561 of the bovine adrenal chromaffin granules. Molecular weight and hydrodynamic properties in micellar solutions of Triton X-100, Biochem. Biophys, Res. Commun. 99: 292.CrossRefGoogle Scholar
  7. Flatmark, T. and Terland, O., 1971, Cytochrome b561 of the bovine adrenal chromaffin granules. A high potential b-type cytochrome, Biochim. Biophys. Acta 253: 487.PubMedCrossRefGoogle Scholar
  8. Fleming, P.J. and Kent, U.M., 1987, Secretory vesicle cytochrome b561: A transmembrane electron transporter, Ann. N.Y. Acad,, Sci. 493: 101.CrossRefGoogle Scholar
  9. Harnadek, G.J., Callahan, R.E., Barone, A.R. and Njus, D., 1985a, An electron transfer dependent membrane potential in chromaffin-vesicle ghosts, Biochemistry 24: 384.PubMedCrossRefGoogle Scholar
  10. Harnadek, G.J., Ries, E.A. and Njus, D., 1985b, Rate of transmembrane electron transfer in chromaffin-vesicle ghosts, Biochemistry 24: 2640.PubMedCrossRefGoogle Scholar
  11. Herman, H.H., Wimalasena, K., Fowler, L.C., Beard, C.A. and May, S.W., 1988, Demonstration of the ascorbate dependence of membrane-bound dopamine ß-monooxygenase in adrenal chromaffin granule ghosts, J. Biol, Chem, 263: 666.Google Scholar
  12. Isied, S.S., 1984, Long-range electron transfer in peptides and proteins, Prog. Inorg. Chem. 32: 443.CrossRefGoogle Scholar
  13. Iyanagi, T., Yamazaki, I. and Anan, K.F., 1985, One-electron oxidation-reduction properties of ascorbic acid, Biochim. Biophys. Acta 806: 255.CrossRefGoogle Scholar
  14. Kelley, P.M. and Njus, D., 1986, Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts, J. Biol. Chem. 261: 6429.PubMedGoogle Scholar
  15. Kelley, P.M. and Njus, D., 1988, A kinetic analysis of electron transport across chromaffin vesicle membranes, J. Biol. Chem, 263: 3799.PubMedGoogle Scholar
  16. Levine, M., Morita, K., Heldman, E. and Pollard, H.B., 1985, Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla, J. Biol. Chem. 260: 15598.PubMedGoogle Scholar
  17. Marcus, R.A. and Sutin, N., 1985, Electron transfers in chemistry and biology, Biochim. Biophys. Acta 811: 265.CrossRefGoogle Scholar
  18. Menniti, F.S., Knoth, J. and Diliberto, E.J., Jr., 1986, Role of ascorbic acid in dopamine-ß-hydroxylation: The endogenous enzyme cofactor and putative electron donor for cofactor regeneration, J. Biol. Chem. 261: 16901.Google Scholar
  19. Njus, D., Kelley, P.M. and Harnadek, G.J., 1986, Bioenergetics of secretory vesicles, Biochim. Biophys. Acta 853: 237.PubMedCrossRefGoogle Scholar
  20. Njus, D., Kelley, P.M., Harnadek, G.J. and Pacquing, Y.V., 1987, Mechanism of ascorbic acid regeneration mediated by cytochrome b561, Ann. N.Y. Acad.Sci. 493: 108.PubMedCrossRefGoogle Scholar
  21. Njus, D., Knoth, J., Cook, C. and Kelley, P.M., 1983, Electron transfer across the chromaffin granule membrane, J. Biol, Chem, 258: 27.Google Scholar
  22. Wakefield, L.M., Cass, A.E.G. and Radda, G.K., 1986a, Functional coupling between enzymes of the chromaffin granule membrane, J. Biol. Chem. 261: 9739.PubMedGoogle Scholar
  23. Wakefield, L.M., Cass, A.E.G. and Radda, G.K., 1986b, Electron transfer across the chromaffin granule membrane, J. Biol. Chem. 261: 9746.PubMedGoogle Scholar
  24. Williams, N.H. and Yandell, J.K., 1983, Ruthenium and iron complexes of dipicolinic acid: Synthesis, solution properties and kinetics of electron transfer reactions with ascorbate ions, Aust. J. Chem. 36: 2377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • David Njus
    • 1
  • Norma J. Kusnetz
    • 1
  • Yvonne Vivar Pacquing
    • 1
  • Patrick M. Kelley
    • 1
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations