Kinetics of Redox State as Related to Plant Growth and Development

  • E. Wagner
  • M. Bonzon
  • S. Frosch
  • S. Ruiz Fernández
  • S. Kiefer
  • H. Greppin
Part of the NATO ASI Series book series (NSSA, volume 7)


Growth and differentiation in most living systems are tightly coupled to seasonal changes in thermo- and photoperiod. Photo- and thermo-periodic phenomena show a rhythmic change in sensitivity which is endogeneous in character and reflects an endogeneous circadian rhythm in metabolic activity. The network of eucaryotic energy metabolism might be conceived as an evolutionary adaptation to a cyclic energy supply from the environment. It is probable that, in the course of evolution, circadian metabolic acitvity became the innate timer controlling growth, differentiation and behaviour in eukaryotes.


Energy Charge Energy Transduction Spinach Leave Endogeneous Rhythmicity Chenopodium Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WAGNER, E. (1976): Endogeneous rhythmicity in energy metabolism: Basis for timer-photoreceptor-interactions in photoperiodic control. In: Dahlem Workshop on the Molecular Basis of Circadian Rhythms, J.W. Hastings and H.G. Schweiger (eds.), Dahlem Konferenzen, Berlin AabkonVerlagsgesellschaft, pp. 215–238.Google Scholar
  2. 2.
    WAGNER, E. (1977): Molecular basis of physiological rhythms. In: Integration of Activity in the Higher Plant, D.H. Jennings, ed., Socienty for Experimental Biology, Symposium 31, Cambridge, Univerity Press, pp. 33–72.Google Scholar
  3. 3.
    WAGNER, E., BONZON, M. and GREPPIN, H. (1985): Membrane-oscillator hypothesis of metabolic control in photoperiodic time measurement and the temporal organization of development and behaviour in plants. In: New Developements and Methods in Membrane Research and Biological Energy Transduction, L. Packer, ed., Plenum Pub. Co., pp. 525–546.Google Scholar
  4. 4.
    WAGNER, E. and FUKSHANSKY, L. (1985): Die zeitliche Organisation des eukaryoten Stoffwechsels als Grundlage für die Signalverarbeitung in Photo-und Thermodperiodismus. Ber. Dtsch. Bot. Ges. 98, 35–52.Google Scholar
  5. 5.
    WAGNER, E. (1983): Circadian rhythms: The basis for information processing in eukaryotes during adaptation to seasonal changes in photo-and thermoperiods, In: Molecular Models of Photoresponsiveness. G. Montagnoli and B.F. Erlanger (eds.), Plenum Pub. Co., pp. 197–202.CrossRefGoogle Scholar
  6. 6.
    WAGNER, E., HAERTLE, U., KOSSMANN, I. and FROSCH, S. (1983): Metabolic and development adaptation of eukaryotic cells as related to endogeneous and exogeneous control of trans locators between subcellular compartments. In: Edocytobiology II, W. Schwemmler and H. Schenk (eds.), Walter de Gruyter & Co., Berlin, New York, pp. 341–352.Google Scholar
  7. 7.
    WAGNER, E., TETZNER, J., HAERTLE, U. and DEITZER, G.F. (1974): Endogeneous rhythmicity and energy transduction. VIII. Kinetics in enzyme activity, redox state and energy charge as related to photomorphogenesis in seedlings of Chenopodium rubrum L., Ber. Dtsch. Bot. Ges. 87, 291–302Google Scholar
  8. 8.
    WAGNER, E., DEITZER, G.F., FISCHER, S., FROSCH, S., KEMPF, O. and STOEBELE, L. (1975): Endogeneous oscillations in pathways of energy transduction as related to circadian rhythmicity and photoperiodic control. BioSystems 7, 68–76PubMedCrossRefGoogle Scholar
  9. 9.
    BONZON, M., SIMON, P., DEGLI AGOSTI, R., GREPPIN, H. and WAGNER, E. (1987) Activity of glyceraldehyde-3-phosphate dehydrogenase isozymes during photoperiodic floral induction in spinach leaves. Physiol. Plant. 70, 577–582.CrossRefGoogle Scholar
  10. 10.
    WAGNER, E., STOEBELE, L. and FROSCH, S. (1974): Endogeneous rhythmicity and energy transduction. V. Rhythmicity in adenine nucleotides and energy charge in seedlings of Chenopodium rubrum L. J. Interdiscipl. Cycle Res. 5, 77–88.CrossRefGoogle Scholar
  11. 11.
    WAGNER, E. and FROSCH, S. (1974): Endogeneous rhythmicity and energy transduction. VI. Rhythmicity in reduced and oxidized phyridine nucleotide levels in seedlings of Chenopodium rubrum L. J. Interdiscipl. Cycle Res. 5, 231–239.CrossRefGoogle Scholar
  12. 12.
    BONZON, M., HUG, M., WAGNER, E. and GREPPIN, H. (1981): Adenine nucleotides and energy charge evolution during the induction of flowering in spinach leaves. Planta 152, 189–194.CrossRefGoogle Scholar
  13. 13.
    BONZON, M., SIMON, P., GREPPIN, H. and WAGNER, E. (1983): Pyridin nucleotides and redox charge evolution during the induction of flowering in spinach leaves. Planta 159, 254–260.CrossRefGoogle Scholar
  14. 14.
    WAGNER, E., FROSCH, S. and KEMPF, 0. (1974): Endogeneous rhythmicity and energy transduction. VII. Phytochrome-modulated rhythms in pyridine nucleotide levels in seedlings of Chenopodium rubrum. Plant. Sci. Lett. 3, 43–48.CrossRefGoogle Scholar
  15. 15.
    KIEFER, S., KLINGLER, H., PENEL, C., GREPPIN, H. and WAGNER, E. (1986): Photoperiodic and phytochrome control of peroxidase binding to micorsomes from Pharbitis nil cotyledons. 5th Congress of FESPP, Hamburg, FRG, Book of Abstracts 5–25.Google Scholar
  16. 16.
    KIEFER, S., PENEL, C., GREPPIN, H. and WAGNER, E. (1987): Association de peroxydases aux membranes de courgettes, de raifort et de pharbitis nil. Arch. Sc. Genève 40, 369–378.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • E. Wagner
    • 1
  • M. Bonzon
    • 2
  • S. Frosch
    • 1
  • S. Ruiz Fernández
    • 1
  • S. Kiefer
    • 2
  • H. Greppin
    • 2
  1. 1.Institut für Biologie IIUniversität FreiburgFreiburgGermany
  2. 2.Physiologie VégétaleUniversité de GenèveGenèveSwitzerland

Personalised recommendations