b-Type Cytochromes, Light- and NADH-Dependent Oxido-Reductase Activities in Plant Plasma Membranes

  • Roland Caubergs
  • Han Asard
  • Jan A. De Greef
Part of the NATO ASI Series book series (NSSA, volume 7)


Blue light induces many important biological phenomena in plants and microorganisms (Senger, 1980, 1984a; Senger and Briggs, 1981; Senger and Schmidt, 1986). The characterization of the sequence of events from the photoperception to the final respons is the ultimate aim in the area of photobiological research. These responses are often extensively described at the macrophysiological level but the molecular perception mechanism(s) remain obscure. In higher plant phototropism it seems justified to propose an alteration in membrane properties (Firn, 1986). The basic discussion centers obviously around the primary reactions as a consequence of the photochemical reaction of the receptor. Changes in transmembrane ion gradients are considered as an early step in the reaction chain and occur by alterations in the existing electrochemical potential differences (Evans, 1985). According to chemiosmotic principles, changes in plasma membrane ATPase activity are directly or indirectly responsible for ion exchange (Serrano, 1985). Another system also working as a proton pump is provided by an electron transfer chain. The latter system is well described for mitochondria and chloroplasts but now increasing evidence supports the presence of a proton translocating redox mechanism in the plasma membrane (Crane et al., 1985; Møller and Lin, 1986). It is precisely the aim of this symposium to discuss the possible involvement of these systems in membrane transport and growth phenomena. Several contributions will describe the various oxidoreductases located on the plasma membrane.


Blue Light Midpoint Potential Plant Plasma Membrane NADH Oxidase Activity Purify Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asard, H., Caubergs, R., Renders, R. and De Greef, J. A., 1987, Duroquinonestimulated NADH oxidase activity and b-type cytochromes in the plasma membrane of cauliflower and mung beans. Plant Science, 53: 109–119.CrossRefGoogle Scholar
  2. Caubergs, R. J., Asard, H. H., De Greef, J. A., Leeuwerik, F. J. and Oltmann, F. L., 1986, Light-inducible absorbance changes and vanadate-sensitive ATPase activity associated with the presumptive plasma membrane fraction from cauliflower inflorescences. Photochem. Photobiol., 44: 641–649.CrossRefGoogle Scholar
  3. Cooke, T. J., Racusen, R. H. and Briggs, W. R., 1983, Initial events in the tip-swelling response of the filamentous gametophyte of Onoclea sensibilis L. to blue light., Planta, 159: 300–307.CrossRefGoogle Scholar
  4. Crane, F. L., Roberts, H., Linnane, H. and Lów, A.W., 1982, Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae., J. Bioenerg. Biomembr., 14: 191–205.PubMedCrossRefGoogle Scholar
  5. Crane, F. L., Sun; I. L., Clark, M. G., Grebing, C. and Löw, H., 1985, Transplasma membrane redox systems in growth and development. Biochem. Biophys. acta, 811: 233–264.CrossRefGoogle Scholar
  6. Evans, R. D., 1985, The action of auxin in plant cell elongation. in: “CRC Critical Reviews in Plant Sciences”, CRC Press, Inc., Boca Raton, Florida, vol. 2, issue 4, p. 317.Google Scholar
  7. Firn, R. D., 1986, Phototropism. in: “Photomorphogenesis in Plants”, R. E. Kendrick and C. H. M. Kronenburg, eds., Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands, p. 367.Google Scholar
  8. Goldsmith, M. H. M., Caubergs, R. J. and Briggs, W. R., 1980, Light-inducible cytochrome reduction in membrane preparation from corn coleoptiles. Plant Physiol, 66: 1067–1073.PubMedCrossRefGoogle Scholar
  9. Hendry, G. A. F., Houghton, J. D. and Jones, O. T. G., 1981, The cytochromes in microsomal fractions of germinating mung beans. Biochem. J, 194: 743–754.PubMedGoogle Scholar
  10. Horwitz, B. A. and Gressel, J., 1986, Properties and working mechanisms of the photoreceptors. in: “Photomorphogenesis in Plants”, R. E. Kendrick and C. H. M. Kronenburg, eds., Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands, p. 159.Google Scholar
  11. Horwitz, B. A., Trad, C. H. and Lipson, E. D., 1986, Modified light-induced absorbance changes in dim photoresponse mutantes of Trichoderma., Plant Physiol, 81: 726–730.PubMedCrossRefGoogle Scholar
  12. Jesaitis, A. J., Heners, P. R., Hertel, R. and Briggs, W. R., 1977, Characterization of a membrane fraction containing a b-type cytochrome. Plant Physiol, 59: 941–947.PubMedCrossRefGoogle Scholar
  13. Kjellbom, P., Larsson, C., Askerlund, P., Schelin, C. and Widell, S., 1985, Cytochrome P-450/420 in plant plasma membranes: a possible component of the blue light reducible flavoprotein cytochrome complex. Photochem. Photobiol, 42: 779–783.CrossRefGoogle Scholar
  14. Klemm, E. and Ninnemann, H., 1978, Correlation between absorbance changes and a physiological response induced by blue light in Neurospora., Photochem. Photobiol, 28: 227–230.CrossRefGoogle Scholar
  15. Klemm, E. and Ninnemann, H., 1979, Nitrate-reductase–a key enzyme in blue light promoted conidiation and absorbance change of Neurospora, Photochem. Photobiol, 29: 629–632.PubMedCrossRefGoogle Scholar
  16. Leong, T. Y. and Briggs, W. R., 1981, Partial purification and characterization of a blue light sensitive cytochrome flavin complex from corn membranes. Plant Physiol, 67: 1042–1046.PubMedCrossRefGoogle Scholar
  17. Leong, T. Y. and Briggs, W. R., 1982, Partial purification and characterization of a blue light sensitive cytochrome flavin complex from corn membranes. Plant Physiol, 67: 875–881.CrossRefGoogle Scholar
  18. Leong, T. Y., Vierstra, R. D. and Briggs, W. R., 1981, A blue light-sensitive cytochrome flavin complex from corn coleoptiles. Further characterization. Photochem. Photobiol, 34: 697–703.Google Scholar
  19. Lipson, E. D. and Presti, D., 1980, Graphical estimation of cross sections from fluence-response data. Photochem. Photobiol, 32: 383–391.CrossRefGoogle Scholar
  20. Lúttge, U. and Clarkson, D.T., 1985, Mineral nutrition: plasmalemma and tonoplast redox activities. Prog. Bot, 47: 73–86.CrossRefGoogle Scholar
  21. Møller, I. M. and Lin, W., 1986, Membrane-bound NAD(P)H dehydrogenases in higher plant cells. Ann. Rev. Plant Physiol, 37: 309–334.CrossRefGoogle Scholar
  22. Munoz, V. and Butler, W. L., 1975, Photoreceptor pigments for blue light in Neurospora crassa., Plant Physiol, 55: 421.PubMedCrossRefGoogle Scholar
  23. Poff, K. L. and Butler, W. L., 1974, Absorbance changes induced by blue light in Phycomyces blakesleanus and Dictyostelium discoideum., Nature (London), 248: 799–801.CrossRefGoogle Scholar
  24. Rich, P. R. and Bendall, D. S., 1975, Cytochrome components of plant microsomes. Eur. J. Biochem, 55: 353–341.CrossRefGoogle Scholar
  25. Rubinstein, B. and Stern, A.I., 1986, Relationships of trans plasmalemma redox activity to proton and solute transport by roots of Zea mays., Plant Physiol, 80: 805–811.PubMedCrossRefGoogle Scholar
  26. Schmidt, W., 1984, Blue light-induced, flavin-mediated transport of redox equivalents across artificial bilayer membranes. J. Membr. Biol, 82: 113–122.PubMedCrossRefGoogle Scholar
  27. Schmidt, W., 1987, Primary reactions and optical spectroscopy of blue light photoreceptors., in: “Blue Light Responses Phenomena and Occurence in Plants and Microorganisms”, H. Senger, ed., CRC Press, Inc., Boca Raton, Florida, p. 20.Google Scholar
  28. Schmidt, W., Hart, J., Filner, P. and Poff, K. L., 1977, Specific inhibition of phototropism in corn seedlings. Plant Physiol, 60: 736–738.PubMedCrossRefGoogle Scholar
  29. Shimazaki, K., Iino, M. and Zeiger, E., 1986, Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba., Nature, 319: 324–326.CrossRefGoogle Scholar
  30. Senger, H., 1980, “The Blue Light Syndrome”, Springer-Verlag, Berlin. Senger, H., 1984a, “Blue Light Effects in Biological Systems”, Spinger-Verlag, Berlin.Google Scholar
  31. Senger, H., 1984b, Cryptochrome, some terminological thoughts. in: “Blue Light Effects in Biological Systems”, Spinger-Verlag, Berlin, p. 72.CrossRefGoogle Scholar
  32. Senger, H. and Briggs, W. R., 1981, The blue light receptor(s): primary reactions and subsequent metabolic changes. in: “Photochemical and Photobiological Review”, K. C. Smith, ed., Pleunm Press, New York, vol. 6, chapt. 1.CrossRefGoogle Scholar
  33. Senger, H. and Schmidt, W., 1986, Diversity of photoreceptors. in: “Photomorphogenesis in Plants”, R. E. Kendrick and C. H. M. Kronenburg, eds., Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands, p. 137.Google Scholar
  34. Serrano, R., 1985, Plasma membrane ATPase of Plants and Fungi. CRC Press, Inc., Boca Raton, Florida.Google Scholar
  35. Song, P.-S. and Moore, T. A., 1974, On the photoreceptor pigment for phototropism and phototaxis: is a carotenoid the moste likely candidate? Photochem. Photobiol, 19: 435–441.PubMedCrossRefGoogle Scholar
  36. Sze, H., 1985, H translocating ATPase: advances using membrane vesicles. Ann. Rev. Plant Physiol, 36: 175–208.CrossRefGoogle Scholar
  37. Trad, C. H. and Lipson, E. D., 1987, Biphasic fluence-response curves and derived action spectra for light-induced absorbance changes in Phycomyces mycelium. J. Photochem. Photobiol., B. Biology, 1: 169–180.Google Scholar
  38. Vanden Driessche, T. and Caubergs, R., 1985, Inhibiting the transduction of blue light signals in Acetabularia., in: “Acetabularia 1984”, S. Bonotto, F. Cenelli, R. Billiau, eds., Belgian Nuclear Center, C.E.N.-S.C.K., Mol, Belgium, p. 91.Google Scholar
  39. Van Wielink, J. E., Oltmann, L. F., Leeuwerik, F. J., De Hollander, J. A. and Stouthamer, A. H., 1982, A method for in situ characterization of b-and c-type cytochromes in E. coli and in complex III from beef heart mitochondria by combined spectrum deconvolution and potentiometric analysis. Biochim. Biophys Acta, 681: 177–190.PubMedCrossRefGoogle Scholar
  40. Vierstra, R. D. and Poff, K. L., 1981, Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedlings. Plant Physiol, 67: 1011–1015.PubMedCrossRefGoogle Scholar
  41. Widell, S. and Larsson, C., 1987, Plasma membrane purification., in: “Blue Light Responses Phenomena and Occurence in Plants and Microorganisms”, H. Senger, ed., CRC Press, Inc., Boca Raton, Florida, p. 99–107.Google Scholar
  42. Widell, S., Caubergs, R. J. and Larsson, C., 1983, Spectral characterization of light-reducible cytochrome in a plasma membrane-enriched fraction and in other membranes from cauliflower inflorescences. Photochem. Photobiol, 38: 95–98CrossRefGoogle Scholar
  43. Yoshida, S., Uemura, M., Niki, T., Sakai, A. and Gusta, L. V., 1983, Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol, 72: 105–114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Roland Caubergs
    • 1
  • Han Asard
    • 1
  • Jan A. De Greef
    • 1
  1. 1.Department of BiologyUniversity of Antwerpen, R.U.C.A.AntwerpenBelgium

Personalised recommendations