The Ferricyanide-Driven Redox System at the Plasmalemma of Plant Cells: Origin of the Proton Production and Reappraisal of the Stoichiometry e/H+

  • Jean Guern
  • Cornelia I. Ullrich-Eberius
Part of the NATO ASI Series book series (NSSA, volume 7)


An external acidification has been found associated with the activity of the ferricyanide-driven redox system at the plasmalemma of animal and plant cells [see 1, 2, 3 for reviews]. This has been interpreted as evidence that the transfer of electrons across the plasmalemma is accompanied by a release of protons from the cells [4, 5]. This conclusion has been formalized by assuming that the redox system at the plasmalemma of plant cells functions as a redox H+ pump [6, 7].


Membrane Depolarization Redox System Perfusion Medium Anionic Charge Potassium Efflux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Crane, F.M., Sun, I.L., Clark, M.G., Grebing, C. and Low H. (1985) Biochim. Biophys. Act. 811, 233–264.CrossRefGoogle Scholar
  2. [2]
    Moller, I.M. and Lin W. (1986) Annu. Rev. Plant Physiol. 37, 309–334.CrossRefGoogle Scholar
  3. [3]
    Lüttge, U. and Clarkson D.T. (1985) Progress in Botany 47, 73–86.CrossRefGoogle Scholar
  4. [4]
    Federico, R. and Giartoso C.E. (1983) Plant Physiol. 73, 182–184.PubMedCrossRefGoogle Scholar
  5. [5]
    Bown, A.W. and Crawford L. (1988) Physiol. Plant., in the press.Google Scholar
  6. [6]
    Ivankina, N.G., Novak, V.A. and Miklashevich A.I. 1984 Redox reactions and active H+-transport in the plasmalemma of Elodea leaf cells. In WJ Cram, K Janacek, R Rybova, S Sigler, eds, Membrane Transport in Plants,J. Wiley & Sons, England, pp 404–405.Google Scholar
  7. [7]
    Novak, V.A. and Miklashevich A.I. (1984) Fiziologiya Rastenii, 31, 489–495.Google Scholar
  8. [8]
    Lass, B., Thiel, G. and Ullrich-Eberius C.I. (1986) Planta 169, 251–259.CrossRefGoogle Scholar
  9. [9]
    Rubinstein, B. and Stern A.I. (1986) Plant Physiol. 80, 805–811.PubMedCrossRefGoogle Scholar
  10. [10]
    Marre, M.T., Moroni, A., Albergoni, F.G. and Marre E. (1988) Plant Physiol., in the press.Google Scholar
  11. [11]
    Neufeld, E. and Sown A.W. (1987) Plant Physiol. 83, 895–899.PubMedCrossRefGoogle Scholar
  12. [12]
    Sijmons, P.C., Lanfermeijer, F.C., de Boer, A.H., Prins H.B.A. and Bienfait H.F. (1984) Plant Physiol. 76, 943–946.PubMedCrossRefGoogle Scholar
  13. [13]
    Stewart, P.A.(1981) In How to understand acid-base. A quantitative acid-base primer for biology and medicine.E. Arnold, London.Google Scholar
  14. [14]
    Macri, F. and Vianello A. (1986) Plant Science 43, 25–30.CrossRefGoogle Scholar
  15. [15]
    Komor, E., Thom M. and Maretzki A. (1987) Planta 170, 34–43.CrossRefGoogle Scholar
  16. [16]
    Blein, J.P., Canivenc, M.C., De Cherade, X., Bergon, M., Calmon, J.P and Scalla R. (1986) Plant Science 46, 77–85.CrossRefGoogle Scholar
  17. [17.
    Schroeder, J.I., Raschke, K. and Neher E. (1987) Proc. Nati. Acad. Sci. USA, 84, 4108–4112.CrossRefGoogle Scholar
  18. [18]
    Kochian, L.V. and Lucas W.J. (1985) Plant Physiol. 77, 429–436.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jean Guern
    • 1
  • Cornelia I. Ullrich-Eberius
    • 2
  1. 1.Laboratory of Plant Cell PhysiologyCNRS-INRAGif sur Yvette CedexFrance
  2. 2.Botanisches InstitutTechnische HochschuleDarmstadtGermany

Personalised recommendations