Advertisement

The Ferricyanide-Driven Redox System at the Plasmalemma of Plant Cells: Origin of the Proton Production and Reappraisal of the Stoichiometry e/H+

  • Jean Guern
  • Cornelia I. Ullrich-Eberius
Part of the NATO ASI Series book series (NSSA, volume 7)

Abstract

An external acidification has been found associated with the activity of the ferricyanide-driven redox system at the plasmalemma of animal and plant cells [see 1, 2, 3 for reviews]. This has been interpreted as evidence that the transfer of electrons across the plasmalemma is accompanied by a release of protons from the cells [4, 5]. This conclusion has been formalized by assuming that the redox system at the plasmalemma of plant cells functions as a redox H+ pump [6, 7].

Keywords

Membrane Depolarization Redox System Perfusion Medium Anionic Charge Potassium Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Crane, F.M., Sun, I.L., Clark, M.G., Grebing, C. and Low H. (1985) Biochim. Biophys. Act. 811, 233–264.CrossRefGoogle Scholar
  2. [2]
    Moller, I.M. and Lin W. (1986) Annu. Rev. Plant Physiol. 37, 309–334.CrossRefGoogle Scholar
  3. [3]
    Lüttge, U. and Clarkson D.T. (1985) Progress in Botany 47, 73–86.CrossRefGoogle Scholar
  4. [4]
    Federico, R. and Giartoso C.E. (1983) Plant Physiol. 73, 182–184.PubMedCrossRefGoogle Scholar
  5. [5]
    Bown, A.W. and Crawford L. (1988) Physiol. Plant., in the press.Google Scholar
  6. [6]
    Ivankina, N.G., Novak, V.A. and Miklashevich A.I. 1984 Redox reactions and active H+-transport in the plasmalemma of Elodea leaf cells. In WJ Cram, K Janacek, R Rybova, S Sigler, eds, Membrane Transport in Plants,J. Wiley & Sons, England, pp 404–405.Google Scholar
  7. [7]
    Novak, V.A. and Miklashevich A.I. (1984) Fiziologiya Rastenii, 31, 489–495.Google Scholar
  8. [8]
    Lass, B., Thiel, G. and Ullrich-Eberius C.I. (1986) Planta 169, 251–259.CrossRefGoogle Scholar
  9. [9]
    Rubinstein, B. and Stern A.I. (1986) Plant Physiol. 80, 805–811.PubMedCrossRefGoogle Scholar
  10. [10]
    Marre, M.T., Moroni, A., Albergoni, F.G. and Marre E. (1988) Plant Physiol., in the press.Google Scholar
  11. [11]
    Neufeld, E. and Sown A.W. (1987) Plant Physiol. 83, 895–899.PubMedCrossRefGoogle Scholar
  12. [12]
    Sijmons, P.C., Lanfermeijer, F.C., de Boer, A.H., Prins H.B.A. and Bienfait H.F. (1984) Plant Physiol. 76, 943–946.PubMedCrossRefGoogle Scholar
  13. [13]
    Stewart, P.A.(1981) In How to understand acid-base. A quantitative acid-base primer for biology and medicine.E. Arnold, London.Google Scholar
  14. [14]
    Macri, F. and Vianello A. (1986) Plant Science 43, 25–30.CrossRefGoogle Scholar
  15. [15]
    Komor, E., Thom M. and Maretzki A. (1987) Planta 170, 34–43.CrossRefGoogle Scholar
  16. [16]
    Blein, J.P., Canivenc, M.C., De Cherade, X., Bergon, M., Calmon, J.P and Scalla R. (1986) Plant Science 46, 77–85.CrossRefGoogle Scholar
  17. [17.
    Schroeder, J.I., Raschke, K. and Neher E. (1987) Proc. Nati. Acad. Sci. USA, 84, 4108–4112.CrossRefGoogle Scholar
  18. [18]
    Kochian, L.V. and Lucas W.J. (1985) Plant Physiol. 77, 429–436.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jean Guern
    • 1
  • Cornelia I. Ullrich-Eberius
    • 2
  1. 1.Laboratory of Plant Cell PhysiologyCNRS-INRAGif sur Yvette CedexFrance
  2. 2.Botanisches InstitutTechnische HochschuleDarmstadtGermany

Personalised recommendations