Advertisement

Energy-Dependent Transport of Urate and Xanthine in the Unicellular Green Alga Chlamydomonas Reinhardtii

  • Manuel Pineda
  • Rafael Pérez
  • Jacobo Cárdenas
Part of the NATO ASI Series book series (NSSA, volume 7)

Abstract

Purines and purine derivatives are utilized by many organisms as sources of nitrogen and energy or as precursors in nucleic acids synthesis. Prior to their utilization these compounds must enter the cells through different transport systems depending on the type of cells. Up to now it has been very hard to distinguish between the transport process proper and the subsequent enzymatic oxidation of the transported substrate, since purines and other nucleic acids breakdown products have been observed to be utilized immediately after their transport into the cells. Thus, it is small wonder that there are so few reports in which these transport systems are distinguished from the subsequent metabolism of these compounds (Syrett, 1981; Munch-Petersen and Mygind, 1983).

Keywords

Chloral Hydrate Proton Motive Force Unicellular Green Alga Xanthine Dehydrogenase Urate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann, E.C.B., and Lynch, V.H., 1964, Purine metabolism by unicellular algae. II. Adenine, hypoxanthine and xanthine degradation by Chlorella pyrenoidosa, Biochim. Biophys. Acta, 87: 370.PubMedGoogle Scholar
  2. Beaman, T.C., Hitchins, A.D., Ochi, K., Vasantha, N., Endo, T., and Freese, E., 1983, Specificity and control of uptake of purines and other compounds in Bacillus subtilis, J. Bacteriol., 156: 1107.PubMedGoogle Scholar
  3. Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72: 248.PubMedCrossRefGoogle Scholar
  4. Cho, B-H., and Komor, E., 1983, Mechanism of proline uptake by Chlorella vulgaris, Biochim. Biophys. Acta, 735: 361.CrossRefGoogle Scholar
  5. Clayton, R.K., 1980, “Photosynthesis: physical mechanisms and chemical patterns”, Cambridge University Press, London.Google Scholar
  6. Córdoba, F., Cardenas, J., and Fernandez, E., 1986, Kinetic characterization of nitrite uptake and reduction by Chlamydomonas reinhardtii, Plant Physiol., 82: 904.Google Scholar
  7. Cornish-Bowden, A., 1981, “Fundamentals of Enzyme Kinetics”, Butterworths, London.Google Scholar
  8. Dagestad, D., Lien, T., and Knutsen, G., 1981, Degradation and compartmentalization of urea in Chlamydomonas reinhardtii, Arch. Microbiol., 129: 261.CrossRefGoogle Scholar
  9. Devi Prasad, P.V., 1983, Hypoxanthine and allantoin as nitrogen sources for the growth of some freshwater green algae, New Phytol., 93: 575.CrossRefGoogle Scholar
  10. Fossati, P., Prencipe, L. and Berti, G., 1980, Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymatic assay of uric acid in serum and urine, Clin Chem., 26: 227.PubMedGoogle Scholar
  11. Franco, A.R., Cardenas, J., and Fernandez, E., 1984, Ammonium(methylammonium) is the co-repressor of nitrate reductase in Chlamydomonas reinhardtii, FEBS Lett., 176: 453.CrossRefGoogle Scholar
  12. Horak, J., 1986, Amino acid transport in eucaryotic microorganisms, Biochim. Biophys. Acta, 864: 223.CrossRefGoogle Scholar
  13. Knaff, D.B., 1986, Active transport in phototrophic bacteria, Photosynth. Res., 10: 507.CrossRefGoogle Scholar
  14. Krenitsky, T.A., Spector, T., and Hall, W.W., 1986, Xanthine oxidase from human liver: purification and characterization, Arch.Biochem. Biophys., 247: 108.PubMedCrossRefGoogle Scholar
  15. Kundu, B., and Nicholas, D.J.D., 1986, Active transport of proline into washed cells of Rhodopseudomonas sphaeroides f. sp. denitrificans grown with nitrate, Arch. Microbiol., 144: 237.Google Scholar
  16. Marzluf, G.A., 1981, Regulation of nitrogen metabolism and gene expression in fungi, Microbiol. Rev., 45: 437.PubMedGoogle Scholar
  17. McMahon, D., and Blaschko, W., 1971, Chloral hydrate inhibits protein synthesis in vivo, Biochim. Biophys. Acta, 238: 338.CrossRefGoogle Scholar
  18. Moreland, D.E., 1980, Mechanisms of action of herbicides, Ann. Rev. Plant Physiol., 31: 597.CrossRefGoogle Scholar
  19. Munch-Petersen, A., and Mygind, B., 1983, Transport of nucleic acid pre-cursors, in: “Metabolism of nucleotides, nucleosides and nucleobases in microorganisms”,A. Munch-Petersen, ed., Academic Press, London.Google Scholar
  20. Pérez-Vicente, R., Pineda, M., and Cardenas, J., 1987, Occurrence of an NADH diaphorase activity associated with xanthine dehydrogenase in Chlamydomonas reinhardtii, FEMS Microbiol. Lett., 43: 321.Google Scholar
  21. Pérez-Vicente, R., Pineda, M., and Cardenas, J., 1988, Isolation and characterization of xanthine dehydrogenase from Chlamydomonas rein-hardtii, Physiol. Plant., 72: 101.CrossRefGoogle Scholar
  22. Pineda, M., and Cardenas, J., 1985, The urate uptake system in Chlamydomonas reinhardtii, Biochim. Biophys. Acta, 820: 95.CrossRefGoogle Scholar
  23. Pineda, M., Cabello, P., and Cardenas, J., 1987, Ammonium regulation of urate uptake in Chlamydomonas reinhardtii, Planta, 171: 496.CrossRefGoogle Scholar
  24. Pineda, M., Fernandez, E., and Cardenas, J., 1984, Urate oxidase of Chlamydomonas reinhardtii, Physiol. Plant., 62: 453.CrossRefGoogle Scholar
  25. Puziss, M.B., Wohlhueter, R.M., and Plagemann, P.G.W., 1983, Adenine transport and binding in cultured mammalian cells deficient in adenine phosphoribosyltransferase, Mol. Cell. Biol., 3: 82.PubMedGoogle Scholar
  26. Rouf, M.A., and Lomprey Jr, R.F., 1968, Degradation of uric acid by certain aerobic bacteria, J. Bacteriol., 96: 617.PubMedGoogle Scholar
  27. Roush, A.H., and Domnas, A.J., 1956, Induced biosynthesis of uricase in yeast, Science, 124: 125.PubMedCrossRefGoogle Scholar
  28. Roush, A.H., Questiaux, L.M., and Domnas, A.J., 1959, The active trans-port and metabolism of purines in the yeast, Candida utilis, J. Cell. Comp. Physiol., 54: 275.PubMedCrossRefGoogle Scholar
  29. Salas, J.A., and Ellar, D.J., 1985, Uric acid and allantoin uptake by Bacillus fastidiosus spores, FEBS Lett., 183: 256.CrossRefGoogle Scholar
  30. Syrett, P.J., 1981, Nitrogen metabolism of microalgae, in: “Physiological basis of phytoplankton ecology”,Can. Bull. Fisheries and Aquatic Sci., 210: 182.Google Scholar
  31. Tsao, T-F., and Marzluf, G.A., 1976, Genetic and metabolic regulation of purine base transport in Neurospora crassa, Mol. Gen. Genet., 149: 347.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Manuel Pineda
    • 1
  • Rafael Pérez
    • 1
  • Jacobo Cárdenas
    • 1
  1. 1.Departamento Bioquímica y Biología Molecular y FisiologíaFac. Ciencias, Univ. Córdoba, AvdaCórdobaSpain

Personalised recommendations