Modulation of Redox Reactions Involved in DNA Synthesis by Oxygen and Artificial Electron Acceptors

  • Charles E. Wenner
  • Anthony Cutry
  • Alan Kinniburgh
  • L. D. Tomei
  • Kirk J. Leister
Part of the NATO ASI Series book series (NSSA, volume 7)


The study of the oxygen requirements for DNA synthesis in C3H 10T1/2 mouse embryonic fibroblasts offers several advantages for the understanding of mitogen-induced cell proliferation. Firstly, cell cycle kinetics have been well defined, and these cells are capable of being staged in Go/Gl so that the role of oxygen in different phases of the cell cycle can be evaluated. Further, these cells are capable of withstanding oxygen deprivation conditions necessary for removal of trace levels of dissolved oxygen which would mask the correct assessment of needs for oxygen.


Amino Acid Incorporation Artificial Electron Acceptor Acid Insoluble Fraction External Electron Acceptor Uridine Monophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mueller, G.C., Wertz, P.W., Kwong, C. H., Anderson, K. and Wrighton, S.A., Dissection of the early events in the activation of lymphocytes by 12–0-Tetradecanoylphorbol-13-acetate in “Carcinogenesis:Fundamental Mechanisms and Environmental Effects”. B. Pullman, P.O. Tso and H. Gelboin,eds. D.Reidel Publishing Co. Dordrecht, Netherlands(1980).Google Scholar
  2. 2.
    Chen, J. and Jones, M. E., The cellular location of dihydroorotate dehydrogenase: Relation to de Novo biosynthesis of pyrimidines. Arch. Biochem and Biophys. 176: 82 (1976).CrossRefGoogle Scholar
  3. 3.
    Thelander, L., Graslund, A. and Thelander, M. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: Possible regulation mechanism. Biochem. Biophys. Res. Commun. 110: 859 (1983).CrossRefGoogle Scholar
  4. 4.
    Crane, F. L., Sun, I. L., Clark, M.G., Grebing, C. and Low, H., 1985, Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta 811: 233 (1985).Google Scholar
  5. 5.
    Leister, K.J., Wenner, C. E., and Tomei. L.D. Correlation of ouabain-sensitive ion movements with cell-cycle activation. Proc. Natl. Acad. Sci. 82: 1599 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    Loffler, M. Towards a further understanding of the growth-inhibiting action of oxygen deficiency. Expt’l Cell Research 157: 195 (1985).CrossRefGoogle Scholar
  7. 7.
    Reichard, P. Regulation of deoxyribotide synthesis. Biochemistry 26: 3245 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    Lau, L.F. and Nathans, D. Expression of a set of growth-related immediate early genes in BALB/C 3T3 cells: Coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. 84: 1182 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    Kruijer, W., Schubert, D. and Verma, I.M. Induction of the proto-oncogene c-fos by nerve growth facto. Proc.Natl.Acad.Sci. 82: 7330 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    Cutry, A.F., Kinniburgh, A.J., Twardzik, D.R. and Wenner, C.E. Transforming growth factor alpha (TGFa) induction of cfos and c-myc expression in C3H 10T1/2 cells. Biochem. Biophys. Res. Comm. (in press, 1988).Google Scholar
  11. 11.
    Greenberg, M.E. and Ziff, E.B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433 (1984).Google Scholar
  12. 12.
    Muller, R., Bravo, R., Burckhardt, J. and Curran, T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312: 716 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    Kelly, K., Cochran, B.H., Stiles, C.D. and Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    Dean, M., Levine, R.A., Ran, W., Kindy, M.S., Sonenshein, G.E. and Campisi, J. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J.Biol.Chem. 261: 9161 (1986).PubMedGoogle Scholar
  15. 15.
    Malviya, A.N. and Anglard, P. Modulation of cytosolic protein kinase C activity by ferricyanide. FEBS Lett. 200: 265 (1986)PubMedCrossRefGoogle Scholar
  16. 16.
    Hagag, N., Lacal, J.C., Graber, M., Aaronson, S. and Viola, M.V. Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol.Cell.Biol. 7: 1984 (1987).PubMedGoogle Scholar
  17. 17.
    Stacey, D.W., Watson, T., Kung, H-F. and Curran, T. Microinjection of transforming ras proteins induces c-fos expression. Mol.Cell.Biol. 7: 523 (1987).PubMedGoogle Scholar
  18. 18.
    Moolenaar, W.H., Mummery, C.L., van der Saag, P.T. and de Laat, S. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 23: 789 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    Pouyssegur, J., Chambard, J.J.C., Franchi, A., Paris, S. and van Obberghen-Schilling, E. Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation. Proc.Natl.Acad.Sci. 79: 3935 (1982).Google Scholar
  20. 20.
    L Allemain, G., Franchi, A., Cragoe, Jr., E. and Pouyssegur, J. Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. J.Biol.Chem. 259: 4313 (1984).PubMedGoogle Scholar
  21. 21.
    Pouyssegur, J., Chambard, J.J.C., Franchi, A., L“Allemain, G., Paris, S. and van Obberghen-Schilling, E. Growth-factor activation of the Na+/H+ antiporter controls growth of fibroblasts by regulating intracellular pH. Cancer Cells (Cold Spring Harbor) 3: 409 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Charles E. Wenner
    • 1
  • Anthony Cutry
    • 1
  • Alan Kinniburgh
    • 1
  • L. D. Tomei
    • 1
  • Kirk J. Leister
    • 1
  1. 1.Roswell Park Memorial InstituteBuffaloUSA

Personalised recommendations