Reductive Release of Iron From Transferrin and Receptor Mediated Recycling

  • H. Goldenberg
  • M. Eder
  • R. Pumm
  • B. Dodel
Part of the NATO ASI Series book series (NSSA, volume 7)


Mammalian cells acquire iron mainly by receptor mediated endocytosis of the iron transport protein transferrin and release of iron from the protein. The bulk of the experimental evidence at present suggests that the critical step for iron release is the acidification of the intracellular endocytic compartment, because lowering the pH significantly lowers the affinity of transferrin for iron. Apotransferrin is then recycled to the cell surface undegraded and released from the plasma membrane because of its low receptor binding affinity at pH above 7 (see 1,2 for review).


K562 Cell Iron Uptake Pyridine Nucleotide Iron Release Reduce Pyridine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Hanover and R.B. Dickson, Transferrin: Receptor mediated endocytosis and iron delivery, in “Endocytosis”, I. Pastan and M.C. Willingham, eds., pp. 131–161. Plenum Press, N.Y. (1985)CrossRefGoogle Scholar
  2. 2.
    R.R. Crichton and M. Charloteaux-Wauters, Iron transport and storage. Eur.J.Biochem. 164, 485–506 (1987)PubMedCrossRefGoogle Scholar
  3. 3.
    J. van Renswoude and K.R. Bridges, J.B. Harford and R.D. Klausner, Receptor -mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment. Proc.Natl Acad.Sci. 79, 6186–8190 (1982)PubMedCrossRefGoogle Scholar
  4. 4.
    S. Paterson, N.J. Armstrong, B.J. Iacopetta, H.J. McArdle and E.H. Morgan, Intravesicular pH and iron uptake by immature erythroid cells. J. Cell. Physiol. 120, 225–232 (1984)CrossRefGoogle Scholar
  5. 5.
    E. Ankel and D.H. Petering, Iron chelating agents and the reductive removal of iron from transferrin. Biochem. Pharmacol. 29, 1833–1837 (1980)PubMedCrossRefGoogle Scholar
  6. 6.
    N. Kojima and G.W. Bates, The reduction and release of iron from Fe3+–transferrin. J.Biol.Chem. 254, 8847–8854 (1979)PubMedGoogle Scholar
  7. 7.
    B.P. Gaber and P. Aisen, Is divalent iron bound to transferrin ? Biochim.Biophys.Acta 221, 228–233 (1970)PubMedCrossRefGoogle Scholar
  8. 8.
    E.H. Morgan, A study of iron transfer from rabbit transferrin to reticulocytes using synthetic chelating agents. Biochim.Biophys.Acta 244, 103–116 (1971)PubMedCrossRefGoogle Scholar
  9. 9.
    E.H. Morgan, Chelator mediated iron efflux from reticulocytes. Biochim.Biophys.Acta 733, 39–50 (1983)PubMedCrossRefGoogle Scholar
  10. 10.
    M.-T. Nunez, E.S. Cole and J.Glass, The reticulocyte plasma membrane pathway of iron uptake as determined by the mechanism of a,a -dipyridyl inhibition. J.Biol. Chem. 258, 1146–1151 (1983)PubMedGoogle Scholar
  11. 11.
    K.R. Bridges and A. Cudkowicz, Effect of iron chelators on the transferrin receptor in K562 cells. J.Biol.Chem. 259, 12970–12977 (1984)PubMedGoogle Scholar
  12. 12.
    E.H. Morgan, Failure of a cell free system from rabbit reticulocytes to remove iron from transferrin. Biochem.J. 158, 489–491 (1976)PubMedGoogle Scholar
  13. 13.
    H. Lów, I.L. Sun, P. Navas, C. Grebing, F.L. Crane and D.J. Morré, Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system. Biochem. Biophys. Res. Comm. 139, 1117–1123 (1986)Google Scholar
  14. 14.
    D.C. Harris, A.L.Rinehart, D.Hereld, R.W.Schwartz, F.P.Burke and A.P.Salvador, Reduction potential of iron in transferrin. Biochim. Biophys. Acta 838, 295–301 (1985)PubMedCrossRefGoogle Scholar
  15. 15.
    G.W. Bates, Metal ion and anion exchange reactions of serum transferrin: the role of quaternary complexes and conformational transitions, in “The Biochemistry and Physiology of Iron” pp. 1–18, P. Saltman and J. Hegenauer, eds. Elsevier, Amsterdam (1982)Google Scholar
  16. 16.
    M.-T. Nunez and J. Glass, Iron uptake in reticulocytes: Inhibition mediated by the ionophores monensin and nigericin. J.Biol. Chem. 260, 14707–14711 (1985)PubMedGoogle Scholar
  17. 17.
    B.B. Lozzio and C.B. Lozzio, Properties and usefulness of the original K562 human myelogenous leukemia cell line. Leuk. Res. 3, 363–370 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    B.S. Stein and H.H. Sussman, Demonstration of two distinct transferrin receptor recycling pathways and transferrinindependent receptor internalization in K562-cells. J.Biol. Chem. 261, 10319–10331 (1986)PubMedGoogle Scholar
  19. 19.
    A. Bomford, S.P. Young and R. Williams, Release of iron from the two iron binding sites of transferrin by cultured human cells: modulation by methylamine. Biochemistry 24, 3472–3478 (1985)PubMedCrossRefGoogle Scholar
  20. 20.
    A. van der Ende, A. du Maize, C.F. Simmons, A.L. Schwartz and G.J. Strous, Iron metabolism in BeWo chorion carcinoma cells: Transferrin mediated uptake and release of iron. J.Biol.Chem. 262, 8910–8916 (1987)PubMedGoogle Scholar
  21. 21.
    C.A. Enns, J.W. Larrick, H. Suomalainen, J. Schroder and H.H. Sussman, Co-migration and internalization of transferrin and its receptor on K562 cells. J.Cell Bio1. 97, 579–585 (1983)CrossRefGoogle Scholar
  22. 22.
    J.W. Larrick, C. Enns, A. Raubitschek and H. Weintraub, Receptor-mediated endocytosis of human transferrin and its cell surface receptor. J. Cell. Physiol. 124, 283–287 (1985)PubMedCrossRefGoogle Scholar
  23. 23.
    R.D. Klausner, J. Van Renswoude, G. Ashwell, C. Kempf, A.N. Schechter, A. Dean and K.R. Bridges, Receptor mediated endocytosis of transferrin in K562 cells. J.Biol.Chem. 258, 4715–4724 (1983)PubMedGoogle Scholar
  24. 24.
    D.L. Bakkeren, C.M.H. de Jeu-Jaspars, M.J. Kroos and H.G. van Eijk, Release of iron from endosomes is an early step in the transferrin cycle. Int.J.Biochem. 19, 179–186 (1987)PubMedCrossRefGoogle Scholar
  25. 25.
    G. Graham and G.W. Bates, Approaches to the standardization of serum unsaturated iron binding capacity. J.Lab.Clin.Med. 88, 477–486 (1976)Google Scholar
  26. 26.
    M. Húttinger, W.J. Schneider, Y.K. Ho, J.L. Goldstein and M.S. Brown, Use of monoclonal anti-receptor antibodies to probe the expression of the Low Density Lipoprotein receptor in tissues of normal and Watanabe Heritable Hyperlipidemic rabbits. J. Clin. Invest. 74, 1017–1026 (1984)CrossRefGoogle Scholar
  27. 27.
    M.B. Omary, I.S. Trowbridge and J. Minowada, Human cell surface glycoprotein with unusual properties. Nature 286, 888–891 (1980)PubMedCrossRefGoogle Scholar
  28. 28.
    P. Aisen and I. Listowski, Iron transport and storage proteins. Ann.Rev.Biochem. 49, 357–393 (1980)PubMedCrossRefGoogle Scholar
  29. 29.
    H. Löw, C. Grebing, A. Lindgren, M. Tally, I.L. Sun and F.L. Crane, Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J.Bioenerg.Biomembr. 19, 535–550 (1987)PubMedGoogle Scholar
  30. 30.
    I.L. Sun, P. Navas, F.L. Crane, D.J. Morré and H. Löw, NADH diferric transferrin reductase in liver plasma membrane. J.Biol.Chem. 262, 15915–15921 (1987)PubMedGoogle Scholar
  31. 31.
    I.L. Sun, R. Garcia-Canero, W. Liu, W. Toole-Simms, F.L. Crane, D.J. Morré and H. Löw, Diferric transferrin reduction stimulates the Na+/H+-antiport of HeLa Cells. Biochem.Biophys.Res.Comm. 145, 467–473 (1987)PubMedCrossRefGoogle Scholar
  32. 32.
    N. Kojima and G.W. Bates, The formation of Fe3+-transferrin-CO3- via the binding and oxidation of Fe2+. J.Biol. Chem. 256, 12034–12039 (1981)Google Scholar
  33. 33.
    R.Klausner, G.Ashwell, J.Van Renswoude, J.Harford and K.R.Bridges, Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle. Proc.Natl.Acad.Sci. 80, 2263–2266Google Scholar
  34. 34.
    J. Wang, J. Pouyssegur, M.C. Willingham and I. Pastan, The role of intracellular pH in ligand internalization. J.Cell.Physio1. 128, 18–22 (1986)CrossRefGoogle Scholar
  35. 35.
    I.L. Sun, F.L. Crane, H. Löw and C. Grebing, Inhibition of plasma membrane NADH dehydrogenase by adriamycin and related anthracycline antibiotics. J.Bioenerg.Biomembr. 16, 209–221 (1984)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Pollack and J. Weaver, Iron release from transferrin: synergistic action between adenosine triphosphate and an ammonium sulfate fraction of hemolysate. J.Lab.Clin.Med. 108, 411–414 (1986)PubMedGoogle Scholar
  37. 37.
    F.L. Crane, I.L. Sun, M.G. Clark, C. Grebing and H. Löw, Transplasma membrane redox systems in growth and development. Biochim.Biophys.Acta 811, 233–264 (1985)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. Goldenberg
    • 1
  • M. Eder
    • 1
  • R. Pumm
    • 1
  • B. Dodel
    • 1
  1. 1.Department of Medical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations