Advertisement

The Release of Iron from a Subfraction of Rat Liver Highly Enriched in Endosomal Organelles Requires Both a Functional H+-ATPase and NADH

  • Torgeir Flatmark
  • Moududur R. Khan
Part of the NATO ASI Series book series (NSSA, volume 7)

Abstract

The liver parenchyma (hepatocytes) is second only to the erythroid bone marrow in its capacity for iron exchange with the plasma iron pool.1 The iron uptake by reticulocytes and hepatocytes seems to occur by two receptor mechanisms,1–4 i.e. (i) the well-known receptor-mediated endocytosis of iron-transferrin, and (ii) the less studied receptor-mediated endocytosis of ferritin (originally termed rhopheocytosis).5,6 Thus, ferritin introduced into the plasma is rapidly cleared from the blood by a receptor-mediated uptake in hepatocytes.4 The two iron proteins may share a common endocytic mechanism and may be processed within the cell in a similar way.2,3 Thus, the reductive mobilization of iron is most effective at acidic pH values for both carrier proteins.7,8

Keywords

Acridine Orange Proton Translocation Lysosomal Fraction Reductive Mobilization Proton Pump Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BPS

bathophenanthroline sulfonate

H+ATPase

H+-transporting adenosine triphosphatase (EC 3.6.1.34)

Δ pH

pH difference across the membrane

Hepes

N -2-hydroxyethylpiperazine- N’ -2-ethanesulfonic acid

Pipes

piperazine-N, N -bis-2-ethanesulfonic acid

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Morgan and E. Baker, Iron uptake and metabolism by hepatocytes, Fed. Proc. 45: 2810 (1986).PubMedGoogle Scholar
  2. 2.
    G. D. Blight and E. H. Morgan, Receptor-mediated endocytosis of transferrin and ferritin by guinea-pig reticulocytes. Uptake by a common endocytotic pathway, Eur. J. Cell Biol. 43: 260 (1987).PubMedGoogle Scholar
  3. 3.
    G. D. Blight and E. H. Morgan, Transferrin and ferritin endocytosis and recycling in guinea-pig reticulocytes, Biochim. Biophys. Acta 929: 18 (1987).CrossRefGoogle Scholar
  4. 4.
    U. Mack, L. W. Powell, and J. W. Halliday, Detection and isolation of a hepatic membrane receptor for ferritin, J. Biol. Chem. 258: 4672 (1983).PubMedGoogle Scholar
  5. 5.
    M. C. Bessis and J. Breton-Gorius, Iron particles in normal erythroblasts and normal and pathological erythrocytes, J. Biophys. Biochem. Cytol. 3: 503 (1957).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Policard and M. Bessis, Sur un mode d’incorporation des macromolcules par la cellule, visible au microscope electronique: la rhopheocytose, Comp. Rend. Hebd. Acad. Sci. 246: 3194 (1958).Google Scholar
  7. 7.
    A. Dautry-Varsat, A. Chiechanover, and H.F. Lodish, pH and the recycling of transferrin during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. U.S.A. 80: 2258 (1983).CrossRefGoogle Scholar
  8. 8.
    F. Funk, J.-P. Lenders, R. R. Crichton, and W. Schneider, Reductive mobilization of ferritin iron, Eur. J. Biochem. 152: 167 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    F. L. Crane, I. L. Sun, M. G. Clark, C. Grebing, and H. Löw, Transplasma-membrane redox systems in growth and development, Biochim. Biophys. Acta 811: 233 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Slinde and T. Flatmark, Determination of sedimentation coefficients of subcellular particles of rat liver homogenates. A theoretical and experimental approach, Anal. Biochem. 56: 324 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    R. K. Berge, H. Osmundsen, and T. Flatmark, Enhancement of long-chain acyl-CoA hydrolase activity in peroxisomes and mitochondria of rat liver by peroxisomal proliferators, Eur. J. Biochem. 141: 637 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Tangerâs, Iron content and degree of lipid peroxidation in liver mitochondria isolated from iron-loaded rats, Biochim. Biophys. Acta 757: 59 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Flatmark, J. Haavik, M. Gronberg, J. L. Kleiveland, S. Wahlstrom Jacobsen, and S. Vik Berge, Isolation from the microsomal fraction of rat liver of a subfraction highly enriched in uncoated endocytic vesicles with high H - ATPase activity and a 50 kDa phosphoprotein, FEBS Lett. 188: 273 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Gronberg and T. Flatmark, Studies on Mg2+-dependent ATPase in bovine adrenal chromaffin granules. With special reference to the effect of inhibitors and energy coupling, Eur. J. Biochem. 164: 1 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Knack and K. H. Röhm, Microcomputers in enzymology. A versatile BASIC computer program for analyzing kinetic data. Hoppe-Seyler’s Z. Physiol. Chem. 362: 1119 (1981).CrossRefGoogle Scholar
  16. 16.
    F. L. Crane and H. Löw, NADH oxidation in liver and fat cell plasma membranes, FEBS Lett. 68: 153 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    A. J. Hymes and F. Mullinax, Assay of galactosyltransferase by high-performance liquid chromatography, Anal. Biochem. 139: 68 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    N. E. Tolbert, Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients, Meth. Enzymol. 31: 734 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Robinson and P. Willcox, 4-Methylumbelliferyl phosphate as a substrate for lysosomal acid phosphatase, Biochim. Biophys. Acta 191: 183 (1969)PubMedCrossRefGoogle Scholar
  20. 20.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Flatmark and A. Tangerâs, Mitochondrial “non-heme non-FeS iron” and its significance in the cellular metabolism of iron, in: “Proteins of Iron Metabolism,” E.B. Brown, ed., Grupe & Stratton, Inc., New York, pp. 349–358 (1977).Google Scholar
  22. 22.
    H. Tolleshaug, Intracellular segregation of asialo-transferrin and asialo-fetuin following uptake by the same receptor system in suspended hepatocytes, Biochim. Biophys. Acta 803: 182 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Nicholls, “Bioenergetics,” pp. 190, Academic Press, London (1982).Google Scholar
  24. 24.
    R. Barr, K. Safranski, I. L. Sun, F. L. Crane, and D. J. Morré, An electrogenic proton pump associated with the Golgi apparatus of mouse liver driven by NADH and ATP, J. Biol. Chem. 259: 14064 (1984).PubMedGoogle Scholar
  25. 25.
    J.-C. Sibille, J.-N. Octave, Y.-J. Scheider, A. Trouet, and R. Crichton, Subcellular localization of transferrin protein and iron in the perfused rat liver. Effect of Triton WR 1339, digitonin and temperature, Eur. J. Biochem. 155: 47 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Kishimoto and M. Tavassoli, Transendothelial transport (transcytosis) of iron-transferrin complex in the rat liver, Am. J. Anat. 178: 241 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    G. D. Watt, R. B. Frankel, and G. C. Papaefthymiou, Reduction of mammalian ferritin, Proc. Natl. Acad. Sci. U.S.A. 82: 3640 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Lbw, I. L. Sun, P. Navas, C. Grebing, F. L. Crane, and D. J. Morré, Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system, Biochem. Biophys. Res. Commun. 139: 1117 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Torgeir Flatmark
    • 1
  • Moududur R. Khan
    • 1
  1. 1.Department of BiochemistryUniversity of BergenBergenNorway

Personalised recommendations