Specific Interaction of the Herbicide Sethoxydim with the Plasmalemma Redox System of Plant Cells

  • Elke Fischer
  • Angela Weber
  • Helmut Schipp von Branitz
  • Ulrich Lüttge
Part of the NATO ASI Series book series (NSSA, volume 7)


Sethoxydim, a cyclohexanedione derivative (Fig. 1), is a selective post-emergence herbicide, which shows a high toxic activity against gramineous plants and low activity against dicotyledonous and other monocotyledonous plants (Iwataki et al., 1983).


Leaf Segment Leaf Cell Electron Transport Activity Sucrose Gradient Centrifugation Ferricyanide Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B.N., 1966, Assay of inorganic phosphate, total phosphate and phosphatases, Methods in Enzymol. 8: 115.CrossRefGoogle Scholar
  2. Asare-Boamah, N.K., and Fletcher, R.A., 1983, Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings, Weed Science, 31: 49.Google Scholar
  3. Bowman, B.J., Mainzer, S.E., Allen, K.E., and Slayman, C.W., 1978, Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa, Biochim. Biophys. Acta, 512: 13.CrossRefGoogle Scholar
  4. Buckhout, T.J., and Hrubec, T.C., 1986, Pyridine nucleotide-dependent ferricyanide reduction associated with isolated plasma membranes of maize (Zea mays L.) roots, Protoplasma, 135: 144.CrossRefGoogle Scholar
  5. De Michelis, M.I., and Spanswick, R.M., 1986, H+ pumping driven by vanadate-sensitive ATPase in membrane vesicles from corn roots, Plant Physiol., 81: 542.PubMedCrossRefGoogle Scholar
  6. Fischer, E., and Lüttge, U., 1980, Membrane potential changes related to active transport of glycine in Lemna gibba Cl, Plant Physiol., 65: 1004.PubMedCrossRefGoogle Scholar
  7. Focke, M., and Lichtenthaler, H.K., 1987, Inhibition of the acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim, Z. Naturforsch., 42: 1361.Google Scholar
  8. Friemert, V., 1986, Untersuchungen über die C09-Abgabe einiger Pflanzen mit Crassulaceen-Säure-Stoffwechsel im Licht, Dissertation, TH Darmstadt.Google Scholar
  9. Hampp, R., 1979, Kinetics of mitochondrial phosphate transport and rates of respiration and phosphorylation during greening of etiolated Avena leaves, Planta, 144: 325.CrossRefGoogle Scholar
  10. Hatzios, K.K., 1982, Effects of sethoxydim on the metabolism of isolated leaf cells of soybean (Glycine max (L.) Merr.), Plant Cell Reports, 1: 87.CrossRefGoogle Scholar
  11. Ishikawa, H., Okunuki, S., Kawana, T., and Hirono, Y., 1980, Histological investigation on the herbicidal effects of alloxydim-sodium in oat, J. Pestic. Sci., 5: 547.CrossRefGoogle Scholar
  12. Iwataki, I., Shibuya, M., and Ishikawa, H., 1983; in: “Pesticide Chemistry. Human Welfare and the Environment”, I. Miyamoto and P.C. Kearney, eds., vol. 1, Pergamon Press, Oxford.Google Scholar
  13. Kjellbom, P., and Larsson, C., 1984, Preparation and polypeptide-composition of chlorophyll-free plasma membranes from leaves of light grown spinach and barley. Physiol. Plant., 62: 501.CrossRefGoogle Scholar
  14. Lichtenthaler, H.K., Kobek, K., and Ishii, K., 1987, Inhibition by sethoxydim of pigment accumulation and fatty acid biosynthesis in chloroplasts of Avena seedlings, Z. Naturforsch., 42: 1275.Google Scholar
  15. Lichtenthaler, H.K., and Meier, D., 1984, Inhibition by sethoxydim of chloroplast biogenesis, development and replication in barely seedlings, Z. Naturforsch., 39: 115.Google Scholar
  16. Macri, F., and Vianello, A., 1986, Independence of trans-plasma membrane proton gradient from NAD(P)H-ferricyanide oxidoreduction in maize root microsomes, Plant Science, 43: 25.CrossRefGoogle Scholar
  17. Palmer, J.M., and Kirk, B.I., 1974, The influence of osmolarity on the reduction of exogenous cytochrome c and permeability of the inner membrane of Jerusalem artichoke mitochondria, Biochemical Journal, 140: 79.PubMedGoogle Scholar
  18. Struve, I., Golle, B., and Lüttge, U., 1987, Sethoxydim-uptake by leaf slices of sethoxydim resistant and sensitive grasses, Z. Naturforsch., 42: 279.Google Scholar
  19. Weber, A., Fischer, E., Schipp von Branitz, H., and Lüttge, U., 1988, The effects of the herbicide sethoxydim on transport processes in sensitive and tolerant grass species. I. Effects on the electrical membrane potential and alanine uptake, Z. Naturforsch., 43c: in press.Google Scholar
  20. Weber, A., and Lüttge, U., 1988, The effects of the herbicide sethoxydim on transport processes in sensitive and tolerant grass species. II. Effects on membrane-bound redox systems in plant cells, Z. Naturforsch., 43c: in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Elke Fischer
    • 1
  • Angela Weber
    • 1
  • Helmut Schipp von Branitz
    • 1
  • Ulrich Lüttge
    • 1
  1. 1.Institut für BotanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations