Introductory Remarks

  • F. L. Crane
Part of the NATO ASI Series book series (NSSA, volume 7)


The concept of plasma membrane electron transport is not new. Various facets have been studied over the years especially in relation to ion-transport, fatty acid desaturation, hormonal control, and peroxidative defense mechanisms1. There has been evidence for some time that blue light control of plant growth can be expressed in the plasma membrane but conclusive evidence for this location has developed slowly2. Evidence that impermeable oxidants could stimulate cell division presented over 40 years ago was apparently never followed up3. Consequently the general idea that plasma membrane electron transport can control growth and development has developed only recently4.


NADH Oxidase Liver Plasma Membrane Stimulate Cell Division Eukaryotic Plasma Membrane Redox Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Löw and F.L. Crane, Redox functions in plasma membranes. Biochim Biophys Acta 515: 141 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Senger, Blue Light Effects in Biological Systems, Springer-Verlag Berlin 1984.Google Scholar
  3. 3.
    M.M. Brooks, Activation of eggs by oxidation reduction indicators. Science 106: 320 (1947).PubMedCrossRefGoogle Scholar
  4. 4.
    F.L. Crane, I.L. Sun, M.G. Clark, C. Grebing and H. Löw, Transplasma membrane redox systems in growth and development. Biochim Biophys Acta 811: 233 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    F.L. Crane, H. Löw and M.G. Clark, Plasma membrane redox enxymes in The Enzymes of Biological Membranes Vol 4, ed. A.N. Martonosi, Plenum, N.Y. (1985) p. 465.CrossRefGoogle Scholar
  6. 6.
    D.J. Morré, P. Navas and F.L. Crane, Isolation, Purification, Evaluation and Quantitation of Plasma Membranes from Tissues and Cultured Cells: Methods and Applications to Cell Free Systems for Analysis of Growth Processes, in Redox Functions of the Eukaryotic Plasma Membranes. J. Ramirez ed. Consejo Superior de Investigaciones Cientificas, Madrid 1987, p. 93.Google Scholar
  7. 7.
    I.M. Moller and W. Lin, Membrane bound dehydrogenases in higher plant cells. Ann Rev Plant Physiol 37: 309 (1986).CrossRefGoogle Scholar
  8. 8.
    R. Mitchell, The lethal oxidase of leucocytes. Trends Biochem Sci 8: 117 (1983).CrossRefGoogle Scholar
  9. 9.
    L.M. Henderson, J.B. Chappell and 0.T.G. Jones, Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Biochem J 251: 563 (1988).PubMedGoogle Scholar
  10. 10.
    H.F. Bienfait, Regulated redox processes at the plasma-lemma of plant root cells and their function in iron uptake. J Bioenerg Biomemb 17: 73 (1985).CrossRefGoogle Scholar
  11. 11.
    H. Goldenberg, Plasma membrane redox activities. Biochim Biophys Acta 694: 203 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Bruder, A. Bretscher, W.W. Franks and E.-D. Jarasch, Plasma membranes from intestinal microvilli and erythrocytes contain cytochromes b5 and P420. Biochim Biophys Acta 600: 739 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    D.P. Gayda, F.L. Crane, D.J. Morré and H. Löw, Hormone effects on NADH oxidizing enzymes of plasma membranes of rat liver. Proc. Indiana Acad Sci 86: 385 (1977).Google Scholar
  14. 14.
    D.J. Morré, P. Navas, C. Penel and F. Castillo, Auxin stimulated NADH oxidase (semidehydroascorbate reductase) of soybenn plasma membrane: Role in acidification of the cytoplasm. Protoplasma 133: 195 (1986).CrossRefGoogle Scholar
  15. 15.
    I.L. Sun, P. Navas, F.L. Crane, D.J. Morré and H. Löw, NADH diferric transferrin reductase activity in liver plasma membranes. J Biol Chem 262: 15915 (1987).PubMedGoogle Scholar
  16. 16.
    J.A. Kant and T.L. Steck, Cation impermeable inside out and right side out vesicles from human erythrocyte membranes. Nature 240: 26 (1972).Google Scholar
  17. 17.
    E.S. Guzman Barron and L.A. Hoffman, The catalytic effect of dyes on the oxygen consumption of living cells. J Gen Physiol 13: 483 (1929).Google Scholar
  18. 18.
    R.K. Mishra and H. Passow, Induction of intracellular ATP synthesis by extra cellular ferricyanide in human blood cells. J Memb Biol 1: 214 (1969).CrossRefGoogle Scholar
  19. 19.
    C. Grebing, F.L. Crane, H. Löw and K. Hall, A trans-membrane NADH dehydrogenase in human erythrocyte membranes. J Bioenerg Biomemb 16: 517 (1984).CrossRefGoogle Scholar
  20. 20.
    D.J. Morré, E.L. Vigil, C. Frantz, H. Goldenberg and F.L. Crane, Cytochemical demonstration of glutaraldehyde resistant NADH ferricyanide oxidoreductase in rat liver plasma membranes and Golgi apparatus. Cytobiologie 18: 213 (1978).PubMedGoogle Scholar
  21. 21.
    K.A.O. Ellem and G.F. Kay, Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells. Biochem Biophys Res Communs 112: 183 (1983).CrossRefGoogle Scholar
  22. 22.
    F.L. Crane, H. Löw, I.L. Sun, P. Navas and D.J. Morré, Redox control of cell growth in Redox Functions of the Eukaryotic Plasma Membrane, ed. J. Ramirez, Consejo Superior de Investigaciones Cientificas, Madrid 1987, p. 3.Google Scholar
  23. 23.
    I.L. Sun, F.L. Crane, H. Löw and C. Grebing, Trans-plasma membrane redox stimulates HeLa cell growth. Biochem Biophys Res Communs 125: 649 (1984).CrossRefGoogle Scholar
  24. 24.
    V.V. Polevoy and T. Salamatova, Auxin, proton pump and cell trophics, in E. Marré and O. Ciferri eds. Regulation of Cell Membrane Activities in Plants, Elsevier, Amsterdam 1977, p. 209.Google Scholar
  25. 25.
    F.L. Crane, R. Barr, T.A. Craig and D.J. Morré, Trans-plasma membrane electron transport in relation to cell growth and iron uptake. J Plant Nutrition in press 1988.Google Scholar
  26. 26.
    T.L. Dormandy and Z. Zardy, The mechanism of insulin action: the immediate electrochemical effects of insulin on red cell systems. J Physical 180: 684 (1965).Google Scholar
  27. 27.
    I.L. Sun, F.L. Crane, C. Grebing and H. Löw, Properties of a transplasma membrane electron transport system in HeLa cells. J Bioenerg Biomemb 16: 583 (1984).CrossRefGoogle Scholar
  28. 28.
    P. Navas, I.L. Sun, D.J. Morré and F.L. Crane, Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Communs 135: 110 (1986).CrossRefGoogle Scholar
  29. 29.
    V.A. Novak and N.G. Ivankina, Influence of nitroblue tetrazolium on membrane potential and ion transport in water thymes. Soviet Plant Physiol 30: 845 (1983).Google Scholar
  30. 30.
    H. Löw, F.L. Crane, E.J. Partick and M.G. Clark, Adrenergic stimulation of trans-sarcolemma electron efflux in perfused heart: Possible regulation of Ca++ channels by a sarcolemma redox system. Biochim Biophys Acta 844: 142 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    H.N. Christensen, Amino acid transport in Redox Functions of the Eukaryotic Plasma Membrane, ed. J. Ramirez, Consejo Superior de Investigaciones Cientificas, Madrid 1987, p. 117.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • F. L. Crane
    • 1
  1. 1.Department of Biological SciencePurdue UniversityW. LafayetteUSA

Personalised recommendations