Low Energy Ion Penetration and Collision Cascades in Solids

  • H. M. Urbassek
Part of the Nato ASI Series book series (NSSB, volume 271)


Effects of the interaction of fast particles with solids and surfaces form the general subject of this Advanced Study Institute. The present lecture specifically addresses the phenomena occurring under what is called low-energy ion bombardment, i.e. where nuclear stopping dominates more or less over electronic stopping. In this regime, the slowing down of the bombarding ion and its range distribution will be studied. Furthermore, the effects on the irradiated target, in particular the formation of a collision cascade and the sputtering of the target, will be analyzed. It is hereby attempted to give an introduction to the field, stressing the relevant concepts and outlining the analytical and computational tools available. Introductory and review articles covering in greater detail several aspects of the topics addressed here are available [1–3]. The present lecture attempts to describe both analytical and simulational approaches, in order to allow for a fair comparison of the virtues and drawbacks of the respective methods.


Collision Cross Section Target Atom Monte Carlo Code Collision Cascade Spatial Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sigmund, Rev. Roum. Phys. 17 (1972) 823; 969; 1079.Google Scholar
  2. 2.
    J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping Powers and Ranges of Ions in Matter, vol 1, J.F. Ziegler, ed., Pergamon, New York (1985).Google Scholar
  3. 3.
    R. Behrisch, ed., Sputtering by Particle Bombardment, vols. 1 and 2, Springer, Berlin (1981,1983).Google Scholar
  4. 4.
    J. Lindhard, V. Nielsen, M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. 36, no.10 (1968).Google Scholar
  5. 5.
    W.D. Wilson, L.G. Haggmark, J.P. Biersack, Phys. Rev. B15 (1977) 2458.ADSGoogle Scholar
  6. 6.
    A.E. Carlsson, in Solid State Physics 43, H. Ehrenreich, D. Turnbull, eds., (1990) p 1.Google Scholar
  7. 7.
    J. Lindhard, M. Scharff, Phys. Rev. 124 (1961) 128.ADSCrossRefGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, Mechanics, Pergamon, Oxford (1960)MATHGoogle Scholar
  9. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Pergamon, Oxford (1958).MATHGoogle Scholar
  10. 9.
    J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33, no.10 (1968).Google Scholar
  11. 10.
    V.I. Shulga, M. Vicanek, P. Sigmund, Phys. Rev. A39 (1989) 3360.ADSGoogle Scholar
  12. 11.
    P. Sigmund, M.T. Robinson, M.I. Baskes, M. Hautala, F.Z. Cui, W. Eckstein, Y. Yamamura, S. Hosaka, T. Ishitani, V.I. Shulga, D.E. Harrison, Jr., I.R. Chakarov, D.S. Karpuzov, E. Kawatoh, R. Shimizu, S. Valkealahti, R.M. Nieminen, G. Betz, W. Husinsky, M.H. Shapiro, M. Vicanek, H.M. Urbassek, Nucl. Instr. Meth. B36 (1989) 110.ADSGoogle Scholar
  13. 12.
    K.B. Winterbon, P. Sigmund, J.B. Sanders, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 37, no.14 (1970).Google Scholar
  14. 13.
    M.M.R. Williams, Prog. Nucl. Energy. 3 (1979) 1.CrossRefGoogle Scholar
  15. 14.
    W. Huang, H.M. Urbassek, P. Sigmund, Phil. Mag. A52 (1985) 753.ADSGoogle Scholar
  16. 15.
    M. Vicanek, H.M. Urbassek, in preparation.Google Scholar
  17. 16.
    M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions, Natl. Bureau Standards, Washington DC (1965).Google Scholar
  18. 17.
    P. Sigmund, in Sputtering by Particle Bombardment, vol.1, R. Behrisch, ed., Springer, Berlin (1981), p.9.CrossRefGoogle Scholar
  19. 18.
    J.J. Duderstadt, W.R. Martin, Transport Theory, Wiley, New York (1979).MATHGoogle Scholar
  20. 19.
    K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading (1967).MATHGoogle Scholar
  21. 20.
    J.B. Sanders, Thesis, Univ. Leiden, 1968.Google Scholar
  22. 21.
    J. Bottiger, J.A. Davies, P. Sigmund, K.B. Winterbon, Radiat. Eff. 11 (1971) 69.CrossRefGoogle Scholar
  23. 22.
    H.M. Urbassek, Nucl. Instr. Meth. B4 (1984) 356ADSGoogle Scholar
  24. H.M. Urbassek, Nucl. Instr. Meth. B6 (1985) 585.Google Scholar
  25. 23.
    H.M. Urbassek, M. Vicanek, Phys. Rev. B37 (1988) 7256.ADSGoogle Scholar
  26. 24.
    J. Yvon, J. Nucl. Energy 14 (1957) 305.Google Scholar
  27. 25.
    K.T. Waldeer, H.M. Urbassek, Nucl. Instr. Meth. B18 (1987) 518.Google Scholar
  28. 26.
    K.T. Waldeer, H.M. Urbassek, Appi. Phys. A45 (1988) 207.ADSCrossRefGoogle Scholar
  29. 27.
    M.T. Robinson, I.M. Torrens, Phys. Rev. B9 (1974) 5008ADSGoogle Scholar
  30. M.T. Robinson, in ref.[3], vol.1, p.73.Google Scholar
  31. 28.
    A. Alcouffe, R. Dautray, A. Forster, G. Ledanois, B. Mercier, eds., Monte Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics, Lecture Notes in Physics 240, Springer, Berlin (1985).Google Scholar
  32. 29.
    M. Vicanek, H.M. Urbassek, Nucl. Instr. Meth. B30 (1988) 507.ADSGoogle Scholar
  33. 30.
    J.P. Biersack, W. Eckstein, Appi. Phys. A34 (1984) 73.ADSCrossRefGoogle Scholar
  34. 31.
    H.H. Andersen, Nucl. Instr. Meth. B18 (1987) 321.Google Scholar
  35. 32.
    R.S. Averback, T. Diaz de la Rubia, R. Benedek, Nucl. Instr. Meth. B33 (1988) 693.ADSGoogle Scholar
  36. 33.
    V.I. Shulga, P. Sigmund, Nucl. Instr. Meth., in press.Google Scholar
  37. 34.
    J. Lindhard, M. Scharff, H.E. Schiott, Mat. Fys. Medd. Dan. Vid. Selsk. 33, no.14 (1963).Google Scholar
  38. 35.
    P. Sigmund, Nucl. Instr. Meth. B27 (1987) 1.ADSGoogle Scholar
  39. 36.
    P.C. Zalm, Surf. Interface Anal. 11 (1988) 1.CrossRefGoogle Scholar
  40. 37.
    P. Sigmund, Phys. Rev. 184 (1969) 383ADSCrossRefGoogle Scholar
  41. P. Sigmund, Phys. Rev. 187 (1969) 768.ADSCrossRefGoogle Scholar
  42. 38.
    W. Möller, p.151 in Materials Modification by High-Fluence Ion Beams, NATO ASI Series E 155, R. Kelly and M.F da Silva eds., Kluwer, Dordrecht (1989).Google Scholar
  43. 39.
    E.S. Mashkova, V.A. Molchanov, Medium-Energy Ion Reflection from Solids, North-Holland, Amsterdam (1985).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. M. Urbassek
    • 1
  1. 1.Institut für Theoretische PhysikTechnische UniversitätBraunschweigGermany

Personalised recommendations