Advertisement

Experimental Evidence of the Bond Breaking Mechanism in Oxygen Secondary Ion Emission Enhancement

  • J. Ferrón
Part of the Nato ASI Series book series (NSSB, volume 271)

Abstract

We have measured the Ti+ and O- secondary ion emission yields of a Ti sample exposed to oxygen. The oxygen amount at the surface was determined by measuring the OKLL Auger signal, and the chemical effect of oxygen at the surface by measuring the TiLMV and TiLMM Auger line shapes. We found that the oxidation process of Ti presents two clearly differentiated regimes characterized by a different electronic transfer mechanism from titanium to oxygen. These two regimes are also observed in the behavior of the Ti+ and O- yields showing a correlation between the ionization mechanism and the chemical surrounding of the ejected atom.

Keywords

Ionization Probability Oxygen Coverage Electron Depletion 0KLL Auger Auger Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Williams, Appl. Surface Sci. 13 (1982) 241.CrossRefGoogle Scholar
  2. 2.
    P. Williams, Surface Sci. 90 (1979) 588.ADSCrossRefGoogle Scholar
  3. 3.
    G. Blaise and A. Nourtier, Surface Sci. 90 (1979) 495.ADSCrossRefGoogle Scholar
  4. 4.
    M.L. Yu and N.D. Lang, Nucl. Inst. Meth. B14 (1986) 03.Google Scholar
  5. 5.
    J.K. Norskov and B.I. Lundqvist, Phys. Rev. B19 (1979) 5661.ADSGoogle Scholar
  6. 6.
    M.L. Yu and N.D. Lang, Phys. Rev. Lett. 50 (1983) 127.ADSCrossRefGoogle Scholar
  7. 7.
    G. Slodzian and J.F. Hennequin, C. R. Acad. S. C. Paris 263B (1966) 1246.Google Scholar
  8. 8.
    K. Wittmaack, Surface Sci. 112 (1981) 168.ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Yu and K. Mann, Phys. Rev. Lett. 57 (1986) 1476.ADSCrossRefGoogle Scholar
  10. 10.
    M.L. Yu, Nucl. Inst. Meth. B18 (1987) 542.Google Scholar
  11. 11.
    W. Gerhard and C. Plog, Surface Sci. 152/153 (1985) 127.CrossRefGoogle Scholar
  12. 12.
    M.C.G. Passeggi, E.C. Goldberg and J. Ferron, Lectures Notes in Surface Sci., M. Cardona and G. Castro, eds., 319, Springer-Verlag, (1987).Google Scholar
  13. 13.
    M.C.G. Passeggi, E.C. Goldberg and J. Ferron, Phys. Rev. B35 (1987) 8330.ADSGoogle Scholar
  14. 14.
    F.J. Szalkouski and G. Somorjai, J. Chem. Phys. 56, (1972) 6097.ADSCrossRefGoogle Scholar
  15. 15.
    C.N. Rav, D.D. Sarma and M.S. Hedge, Proc. R. Soc. Lond A370 (1980) 269.ADSGoogle Scholar
  16. 16.
    J.B. Bignolas, M. Bujor and J. Bardolle, Surface Sci. 108 (1981) L453.CrossRefGoogle Scholar
  17. 17.
    A. Benninghoven, H. Bispinck, O. Ganschow and L. Wiedmann, Appl. Phys. Lett. 31 (1977) 341.ADSCrossRefGoogle Scholar
  18. 18.
    H. Oechsner and Z. Sroubek, Surface Sci. 127 (1983) 10.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Ferrón
    • 1
  1. 1.INTEC, CONICETUniversidad Nacional del LitoralSanta FeArgentina

Personalised recommendations