Cascade Evolution and Sputtering in Condensed Rare Gases

  • K. T. Waldeer
  • H. M. Urbassek
Part of the Nato ASI Series book series (NSSB, volume 271)


The sputtering of strongly-bonded materials, like metals and semiconductors, by energetic ions can in many cases be understood by the so-called linear cascade theory [1,2]: The projectile ion shares its energy in collisions with target atoms; these recoil from their original positions, collide with other target atoms; etc. Atoms which cross the target surface and are able to overcome the surface barrier, are sputtered. In this approach, the cascade is assumed to be dilute, and collisions between moving atoms can be neglected. It is clear that after some time, practically all particles in the cascade volume have been energized; these then have so small energies, however, that they do not contribute to sputtering.


Boltzmann Equation Target Atom Surface Barrier Linear Boltzmann Equation Nonlinear Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sigmund, Phys. Rev. 184 (1969) 383ADSCrossRefGoogle Scholar
  2. P. Sigmund, Phys. Rev. 187 (1969) 768.ADSCrossRefGoogle Scholar
  3. 2.
    P. Sigmund, in Sputtering by Particle Bombardment I, R. Behrisch, ed., Springer, Berlin (1981) p. 9.CrossRefGoogle Scholar
  4. 3.
    L. Boltzmann, Ber. Wien. Akad.66 (1872) 275.Google Scholar
  5. 4.
    H.M. Urbassek and J. Michl, Nucl. Instr. Meth. B22 (1987) 480.ADSGoogle Scholar
  6. 5.
    W.D. Wilson, L.C. Haggmark and J.P. Biersack, Phys. Rev. B15 (1977) 2458.Google Scholar
  7. 6.
    M. Vicanek and H.M. Urbassek, Nucl. Instr. Meth. B30 (1988) 507.ADSGoogle Scholar
  8. 7.
    G.A. Bird,Molecular Gas Dynamics, Clarendon Press, Oxford (1976).Google Scholar
  9. 8.
    O.M. Belotserkovskiy and V.Y. Yanitskiy, Fluid Mech. Soviet Res. 7 (1978) 42.MathSciNetMATHGoogle Scholar
  10. 9.
    K.T. Waldeer and H.M. Urbassek (in preparation).Google Scholar
  11. 10.
    R.A. Weiler and M.R. Weiler, Nucl. Instr. Meth. 194 (1982) 573.CrossRefGoogle Scholar
  12. 11.
    U. Conrad and H.M. Urbassek, Nucl. Instr. Meth. B48 (1990) 399.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. T. Waldeer
    • 1
  • H. M. Urbassek
    • 1
  1. 1.Institut für Theoretische PhysikTechnische UniversitätBraunschweigGermany

Personalised recommendations