Advertisement

Stopping Power of Large Molecular Clusters in Cold and Heated Solids

  • N. R. Arista
  • A. Gras-Martí
Part of the Nato ASI Series book series (NSSB, volume 271)

Abstract

The energy lost per particle and per travelled path length for a cluster of ions moving in a solid target, shows important differences-usually called vicinage effects- with respect to the energy loss of the separated ions [1–5]. The origin of this effect is the interference in the electronic excitations of the target due to the correlated motion of the penetrating ions. The effect has been theoretically explained [1,2] as interference effects in plasmon and single-particle excitations, but current research on inertial-confinement fusion using ion beams [6,7], and recent beam-target experiments with large molecular clusters [8–10], rise new interest in the evaluation of correlation effects in the stopping of ion clusters in cold and heated solids.

Keywords

Energy Loss Function Heteronuclear Cluster Heated Solid Normal Intermolecular Distance Large Molecular Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Brandt, A. Ratkowsky, and R.H. Ritchie, Phys. Rev. Lett. 33 (1974) 1329;ADSCrossRefGoogle Scholar
  2. N.R. Arista and V.H. Ponce, J. Phys. C8 (1975) L188.ADSGoogle Scholar
  3. 2.
    N.R. Arista, Phys. Rev. B18 (1978) 1.ADSGoogle Scholar
  4. 3.
    J.C. Eckardt, G. Lantschner, N.R. Arista, and R.A. Baragiola, J. Phys. Cll (1978) L851.Google Scholar
  5. 4.
    Proc. of the 9th Int. Conf. on Atomic Collisions in Solids, J. Remilleux et al, eds., Nucl. Instrum. Meth. 194 (1982).Google Scholar
  6. 5.
    G. Basbas and R.H. Ritchie, Phys. Rev. A25 (1982) 1943;ADSGoogle Scholar
  7. A. Arnau, P.M. Echenique, and R.H. Ritchie, Nucl. Instrum. Meth. B40/41 (1982) 329.ADSGoogle Scholar
  8. 6.
    T.A. Mehlhorn, J. Appl. Phys. 52 (1981) 6522;Google Scholar
  9. F.C. Young, D. Mosher, S.A. Goldstein, and T.A. Mehlhorn, Phys. Rev. Lett. 49 (1982) 549;ADSCrossRefGoogle Scholar
  10. J.N. Olsen, T. A. Mehlhorn, J. Maenchen, and D.J. Johnson, J. Appl. Phys. 58 (1985) 2958.ADSCrossRefGoogle Scholar
  11. 7.
    E. Nardi, E. Peleg, and Z. Zinamon, Phys. Fluids 21 (1978) 574; Phys. Rev. Lett. 49 (1982) 1251;Google Scholar
  12. C. Deutsch, G. Maynard and H. Minoo, J. Physique (Paris) C8 (1983) 67;Google Scholar
  13. N.R. Arista and A.R. Piriz, Phys. Rev. A35 (1987) 3450.ADSGoogle Scholar
  14. 8.
    R.J. Beuhler and L. Friedman, Chem. Rev. 86 (1986) 521.CrossRefGoogle Scholar
  15. 9.
    R.J. Beuhler, G. Friedlander, and L. Friedman, Phys. Rev. Lett. 63 (1982) 1292.ADSCrossRefGoogle Scholar
  16. 10.
    P.M. Echenique, J.R. Manson, and R.H. Ritchie, Phys. Rev. Lett. 64 (1990) 1413.ADSCrossRefGoogle Scholar
  17. 11.
    N.R. Arista and W. Brandt, Phys. Rev. A23 (1981) 1898;ADSGoogle Scholar
  18. N.R. Arista and W. Brandt, J. Phys. C18 (1985) 5127.ADSGoogle Scholar
  19. 12.
    I.F. Silvera, Rev. Mod. Phys. 52 (1980) 393.ADSCrossRefGoogle Scholar
  20. 13.
    A.K. Soper and M.G. Phillips, Chem. Phys. 107 (1986) 47.CrossRefGoogle Scholar
  21. 14.
    P.M. Echenique, R.M. Nieminen, J.C. Ashley, and R.H. Ritchie, Phys. Rev. A33 (1986) 897.ADSGoogle Scholar
  22. N.R. Arista and A. Gras-Marti, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • N. R. Arista
    • 1
  • A. Gras-Martí
    • 1
  1. 1.Dpt. de Física AplicadaUniversitat d’AlacantAlacantSpain

Personalised recommendations