Charge Exchange and Energy Loss of Particles Interacting With Surfaces

  • A. Närmann
  • W. Heiland
  • R. Monreal
  • F. Flores
  • P. M. Echenique
Part of the Nato ASI Series book series (NSSB, volume 271)


Experiments on energy dissipation of He-particles interacting with metal surfaces have been performed. The energy range used was 1 – 5 keV. The particles were scattered off a Ni(110) surface at grazing incident angle (5°) and detected under specular reflection condition with a time-of-flight system.

The resulting spectra of backscattered neutral particles show an energy loss of about 5% of the incident energy and an asymmetric shape. These features can be accounted for by two models: 1.- The friction coefficient method describes the interaction via friction coefficients depending on the charge state of the particle. 2.- The convolution method is based on the assumption that each impinging particle excites a number of elementary excitations in the target.

In both cases energy straggling plays an important role.


Friction Coefficient Energy Loss Charge State Incident Energy Neutral Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Kumakhov and F.F. Komarov, Energy Loss and Ion Ranges in Solids, Gordon and Breach, Science Publ. Inc., New York, (1981).Google Scholar
  2. 2.
    R. Monreal, E.C. Goldberg, F. Flores, A. Narmann, H. Derks, and W. HeHand, Surf. Sci. 211/212 (1989) 271.ADSCrossRefGoogle Scholar
  3. 3.
    T.L. Ferrell and R.H. Ritchie, Phys. Rev. B 16 (1977) 115.ADSCrossRefGoogle Scholar
  4. 4.
    P.M. Echenique, R.M. Nieminen, J.C. Ashley, and R.H. Ritchie, Phys. Rev. A 33 (1986) 897.ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Ashley, A. Gras-Martl, and P.M. Echenique, Phys. Rev. A 34 (1986) 2495.Google Scholar
  6. 6.
    F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge, 1979.Google Scholar
  7. 7.
    M. Kato. J. Phys. Soc. Jpn. 55 (1986) 1011.CrossRefGoogle Scholar
  8. 8.
    H. Bichsel, Rev. Mod. Phys. 60 (1988) 663.ADSCrossRefGoogle Scholar
  9. 9.
    A. Narmann, R. Monreal, P.M. Echenique, F. Flores, W. Heiland, and S. Schubert, Phys. Rev. Lett. 64 (1990) 1601.Google Scholar
  10. 10.
    I. Nagy, A. Arnau, and P.M. Echenique, Phys. Rev. B 38 (1988) 9191.ADSCrossRefGoogle Scholar
  11. 11.
    M.T. Robinson and I.M. Torrens, Phys. Rev. B 9 (1974) 5008.ADSCrossRefGoogle Scholar
  12. 12.
    H. Derks, A. Narmann, and W. Heiland, Nucl. Instrum. Methods B44 (1989) 125.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Närmann
    • 1
  • W. Heiland
    • 1
  • R. Monreal
    • 2
  • F. Flores
    • 2
  • P. M. Echenique
    • 3
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany
  2. 2.Dept. Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  3. 3.Kimika FakultateaEuskal Herriko UnibertsitateaSan SebastiánSpain

Personalised recommendations