Wakes, Dynamic Screening

  • Y. Yamazaki
Part of the Nato ASI Series book series (NSSB, volume 271)


Two topics on “wake” phenomena are reported. The first one concerns the density fluctuation induced in solids by swift ions. For this purpose, the knock-on collision electrons (ve ~ 2vp) emitted at 0° from thin carbon foils under 4.5 MeV N 2 + impact were measured as a function of the orientation θ of the molecular axis of the projectile with respect to the beam axis. A marked decrease in the yield has been observed near θ ~ 25°, which is a critical angle where the density fluctuation of target valence electrons changes its feature from collective to single-particle-like. The second topic concerns a search for wake-riding electrons employing slow antiprotons as well as equivelocity protons. Electrons emitted at 0° have been measured for projectile energies from 500 keV to 750 keV. Although a deep dip is predicted at ve ~ vP for antiproton-gas collisions, the observed spectrum is rather smooth with indication of a bump at ~ 50 eV below the energy where the dip is anticipated. The energy and the relative intensity of the bump are found to be consistent with those predicted for electrons released from a wake-riding state.


Density Fluctuation Projectile Energy Carbon Foil Target Electron Momentum Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bohr, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 18 (1948) No.8.Google Scholar
  2. J. Neufeld and R.H. Ritchie, Phys. Rev.98 (1955) 1632.ADSMATHCrossRefGoogle Scholar
  3. 2.
    D.S. Gemmell, Nucl. Instrum. Meth. 194 (1982) 255.ADSCrossRefGoogle Scholar
  4. 3.
    W. Brandt, A. Ratkowski, and R.H. Ritchie, Phys. Rev. Lett. 33 (1974) 1325.ADSCrossRefGoogle Scholar
  5. 4.
    F. Bell, H.D. Betz, H. Panke, and W. Stehling, J. Phys. B9 (1976) L433.Google Scholar
  6. 5.
    S. Datz et al., Phys. Rev. Lett. 40 (1978) 843.ADSCrossRefGoogle Scholar
  7. 6.
    M.F. Steuer, D.S. Gemmell, E.P. Kanter, E.A. Johnson, and B.J. Zabransky, Nucl. Instrum. Meth. 194 (1982) 277.ADSCrossRefGoogle Scholar
  8. 7.
    Y. Yamazaki, W. Koenig, P. Cooney, A. Faibis, E. Kanter, B.J. Zabransky, (to be published).Google Scholar
  9. 8.
    Y. Yamazaki, K. Kuroki, K. Komaki, L.H. Andersen, E. Horsdal-Pedersen, P. Hvelplund, H. Knudsen, S.P. Moller, E. Uggerhøj, and K. Elsener, J. Phys. Soc. Japan 59 (1990) (to be published).Google Scholar
  10. 9.
    P.M. Echenique, R.H. Ritchie, and W. Brandt, Phys. Rev. B20 (1979) 2567.ADSGoogle Scholar
  11. 10.
    W. Koenig, A. Faibis, E.P. Kanter, Z. Vager, and B.J. Zabransky, Nucl. Instrum. Meth. B10/11 (1985) 259.ADSGoogle Scholar
  12. 11.
    V.N. Neelavathi, R.H. Ritchie, and W. Brandt, Phys. Rev. Lett. 33 (1974) 302.ADSCrossRefGoogle Scholar
  13. 12.
    R.H. Ritchie, W. Brandt, and P.M. Echenique, Phys. Rev. B14 (1976) 4808.ADSGoogle Scholar
  14. P.M. Echenique and R.H. Ritchie, Phys. Rev. B21 (1980) 5854.ADSGoogle Scholar
  15. 13.
    A. Rivacoba and P.M. Echenique, Phys. Rev. B36 (1987) 2277.ADSGoogle Scholar
  16. 14.
    M.H. Day, Phys. Rev. Lett. 44 (1980) 752.ADSCrossRefGoogle Scholar
  17. M. Day and M. Ebel, Phys. Rev. B19 (1979) 3434.ADSGoogle Scholar
  18. 15.
    Y. Yamazaki and N. Oda, Nucl. Instrum. Meth. 194 (1982) 415.ADSCrossRefGoogle Scholar
  19. 16.
    Y. Yamazaki, K. Kurobi, F. Fujimoto, L.H. Andersen, P. Hvelplund, H. Knudsen, S.P. Miller, E. Uggerhtfg, and K. Elsener, CERN-PSCC/87–39/ p.108.Google Scholar
  20. 17.
    R. Shakeshaft and L. Spruch, Rev. Mod. Phys. 51 (1979) 369.ADSCrossRefGoogle Scholar
  21. E. Horsdal-Pedersen, C.L. Cocke, and M. Stockli, Phys. Rev. Lett. 50 (1983) 1910.ADSCrossRefGoogle Scholar
  22. 18.
    J. Burgdoerfer, J. Wang, and J. Mueller, Phys. Rev. Lett. 62 (1989) 1599.ADSCrossRefGoogle Scholar
  23. 19.
    J. Lindhard, (private communication), and P.M. Echenique, R.H. Ritchie, and W. Brandt, Phys. Rev. B33 (1986) 431.Google Scholar
  24. F.J. Garcia de Abajo, P.M. Echenique, and R.H. Ritchie, Nucl. Instrum. Meth. 48 (1990) 25.CrossRefGoogle Scholar
  25. 20.
    E. Uggerhøj, Nucl. Instrum. Meth. B33 (1988) 265.ADSGoogle Scholar
  26. K. Elsener, Comments on Atomic and Molecular Physics 22 (1989) 263.Google Scholar
  27. L.H. Andersen, P. Hvelplund, H. Knudsen, S.P. Miller, K. Elsener, K.-G. Rensfelt, and E. Uggerhøj, Phys. Rev. Lett. 57 (1986) 2147.ADSCrossRefGoogle Scholar
  28. L.H. Andersen, P. Hvelplund, H. Knudsen, S.P. Miller, K. Elsener, K.-G. Rensfelt, and E. Uggerhøj, ibid.62 (1989) 1731.CrossRefGoogle Scholar
  29. 21.
    P.D. Fainstein, V.H. Ponce, and R.D. Rivarola, J. Phys. B21 (1989) 2989.ADSGoogle Scholar
  30. C.R. Garibotti and J.E. Miraglia, Phys. Rev. A21 (1980) 572.ADSGoogle Scholar
  31. R.E. Olson and T.J. Gay, Phys. Rev. Lett. 61 (1988) 302.ADSCrossRefGoogle Scholar
  32. C.O. Reinhold and D.R. Schultz, Phys. Rev. A40 (1989) 7373.ADSGoogle Scholar
  33. G. Mehler, B. Mueller, and W. Greiner, Phys. Rev. A36 (1987) 1454.ADSGoogle Scholar
  34. 22.
    L.H. Toburen, W.E. Wilson, and H.G. Paretzke, Phys. Rev. A25 (1982) 713.ADSGoogle Scholar
  35. 23.
    I. Nagy and B. Apagyi, in this volume.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Y. Yamazaki
    • 1
  1. 1.Institute of Physics, College of Arts and SciencesUniversity of TokyoMeguro-ku, TokyoJapan 153

Personalised recommendations