Advertisement

Desorption Induced by Electronic Transitions: Basic Principles and Mechanisms

  • R. A. Baragiola
  • T. E. Madey
Part of the Nato ASI Series book series (NSSB, volume 271)

Abstract

In DIET, Desorption Induced by Electronic Transitions, neutral and ionized atoms and molecules are ejected from solids by electronic excitations of the surface bonds induced by incident electrons, photons or heavy particles. By focusing in electronic transitions, we exclude from DIET desorption induced by direct momentum transfer (sputtering) or by thermal agitation. The term DIET includes electron stimulated desorption (ESD), photon stimulated desorption (PSD) and various forms of heavy-particle induced desorption.

Keywords

Core Hole Auger Process Electron Stimulate Desorption Auger Decay Dissociative Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings Diet-I, N.H. Tolk, M.M. Traum, J.E. Tully, and T.E. Madey, eds. Springer Verlag, Berlin (1983).Google Scholar
  2. 2.
    Proceedings DIET-II, W. Brenig and D. Menzel, eds., Springer Verlag, Berlin (1985).Google Scholar
  3. 3.
    Proceedings DIET-III, R.H. Stulen and M.L. Knotek, eds., Springer, Berlin (1988).Google Scholar
  4. 4.
    Proceedings DIET-IV, Springer Verlag, in press.Google Scholar
  5. 5.
    T.E. Madey and J.T. Yates, J. Vac. Sci. Technol. 8 (1979) 525.ADSCrossRefGoogle Scholar
  6. 6.
    R.E. Johnson and W.L. Brown, Nucl. Instr. Meth. 198 (1982) 103.CrossRefGoogle Scholar
  7. 7.
    M.L. Knotek, Rep. Prog. Phys. 47 (1984) 1499.ADSCrossRefGoogle Scholar
  8. 8.
    T.A. Tombrello, Nucl. Instr. Meth. B2 (1984) 555.ADSGoogle Scholar
  9. 9.
    T.E. Madey, D.E. Ramaker and R. Stockbauer, Ann. Rev. Phys. Chem. 35 (1984) 215.ADSCrossRefGoogle Scholar
  10. 10.
    D. Menzel, Nucl. Inst. Meth. B13 (1986) 507.ADSGoogle Scholar
  11. 11.
    T.E. Madey, Science 234 (1986) 316.ADSCrossRefGoogle Scholar
  12. 12.
    N. Itoh, Nucl. Instr. Meth. B27 (1987) 155.ADSGoogle Scholar
  13. 13.
    J. Schou, Nucl. Instr. Meth. B27 (1987) 188.ADSGoogle Scholar
  14. 14.
    W.L. Brown, Nucl. Instr. Meth. B32 (1988) 1.ADSGoogle Scholar
  15. 15.
    V.N. Ageev, O.P. Burmistrova, and Yu.A. Kuznetsov, Sov. Phys. Usp. 32 (1989) 588.ADSCrossRefGoogle Scholar
  16. 16.
    P. Avouris and R.E. Walkup, Ann. Rev. Phys. Chem. 40. (1989) 173.ADSCrossRefGoogle Scholar
  17. 17.
    H.S. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol II, Oxford Univ. Press, London (1969).Google Scholar
  18. 18.
    Nuclei moving with relative velocities < 105 cm/s, proper of ground-state vibrations, displace < 0.001 Å in 0.1 fs; a negligible value, compared to interatomic distances.Google Scholar
  19. 19.
    T.E. Madey, Surface Sci. 36 (1973) 281.ADSCrossRefGoogle Scholar
  20. 20.
    W. Brenig, Z. Physik B23 (1976) 361.ADSGoogle Scholar
  21. 21.
    R.A. Baragiola, Radiat. Eff. 61 (1982) 47.CrossRefGoogle Scholar
  22. 22.
    See for instance P.J. van den Hoek and A.W. Kleynss, Comments At. Mol. Phys. 23 (1989) 93.Google Scholar
  23. 23.
    P. Nordlander and J.C. Tully, Phys. Rev. B (in press).Google Scholar
  24. 24.
    H.D. Hagstrum, in Inelastic Ion-Surface Collisions, N.H. Tolk, J.C. Tully, W. Heiland, and C. W. White, eds. Academic, NY (1977), p.1.Google Scholar
  25. 25.
    T.E. Madey, J.T. Yates, D.A. King, and C.J. Uhlaner, J. Chem. Phys. 52 (1970) 5215.ADSCrossRefGoogle Scholar
  26. 26.
    M.Q. Ding, E.M. Williams, J.P. Adrados and J.L. de Segovia, Surf. Sci. 140 (1984) L264.Google Scholar
  27. M.Q. Ding and E.M. Williams, Surf. Sci. 160 (1985) 189.ADSCrossRefGoogle Scholar
  28. 27.
    T.R. Hayes and J.F. Evans, Surface Sci. 159 (1985) 466.ADSCrossRefGoogle Scholar
  29. 28.
    F.P. Netzer and T.E. Madey, J. Chem. Phys. 766 (1982) 710.ADSCrossRefGoogle Scholar
  30. 29.
    This may not hold for very small metal particles in conditions of large ionization density, cf. A. Howie, Nature 320 (1986). 684.ADSCrossRefGoogle Scholar
  31. I.V, Vorobeva, Ya.E. Geguzin and E.A. Ter-Ovanes’yan, Sov. Phys. Solid State 29 (1987) 1947.Google Scholar
  32. 30.
    R. Pedrys, D.J. Oostra, and A.E. deVries, in Ref.2, p.190.Google Scholar
  33. 31.
    D.J. O’Shaughnessy, J.W. Boring, S. Cui, and R.E. Johnson, Phys. Rev. Lett. 61 (1988) 1635.ADSCrossRefGoogle Scholar
  34. 32.
    H. Sambe, D.E. Ramaker, L. Parenteau, and L. Sanche, Phys. Rev. Lett. 59 (1987) 236.ADSCrossRefGoogle Scholar
  35. 33.
    P.A. Redhead, Can. J. Phys. 42 (1964) 886.ADSCrossRefGoogle Scholar
  36. 34.
    D. Menzel and R. Gomer, J. Chem. Phys. 41 (1964) 3311.ADSCrossRefGoogle Scholar
  37. 35.
    M.L. Knotek and P.J. Feibelman, Phys. Rev. Lett. 40 (1978) 964.ADSCrossRefGoogle Scholar
  38. M.L. Knotek and P.J. Feibelman, Surface Sci. 90 (1979) 78.ADSCrossRefGoogle Scholar
  39. 36.
    J. Dresner and B. Goldstein, J. Appl. Phys. 47 (1976) 1038.Google Scholar
  40. 37.
    J.A. Kilner and L. Ilkov, Vacuum 34 (1984) 139.CrossRefGoogle Scholar
  41. 38.
    D.E. Ramaker, J.S. Murday, N.H. Turner, G. Moore, M.G. Lagally and J. Houston, Phys. Rev. B19 (1979) 5375.ADSGoogle Scholar
  42. D.E. Ramaker, C.T. White, and J.S. Murday, Phys. Lett. 89A (1982) 211.ADSGoogle Scholar
  43. D.E. Ramaker, J. Vac. Sci. Technol. A1 (1983) 1137.ADSGoogle Scholar
  44. 39.
    L. Calliari, M. Dapor, L. Gonzo and F. Marchetti, in ref.[4].Google Scholar
  45. 40.
    P. Feulner, R. Treichler, and D. Menzel, Phys. Rev. B24 (1981) 7427.ADSGoogle Scholar
  46. 41.
    R. Jaeger, J. Stör, R. Treichler and K. Baberschke, Phys. Rev. Let. 47 (1981) 1300.ADSCrossRefGoogle Scholar
  47. R Jaeger, R. Treichler, and J. Stör, Surf. Sci. 117 (1982)133.CrossRefGoogle Scholar
  48. 42.
    R. Baragiola, T. Madey and A-M. Lanzillotto, in ref.[4].Google Scholar
  49. 43.
    D.E. Ramaker, J.S. Murday, N.H. Turner, G. Moore, M.G. Lagally, and J. Houston; Phys. Rev. B19 (1979) 5375. The authors state that the actual Si charge is closer to one.ADSGoogle Scholar
  50. 44.
    D.E. Ramaker, T.E. Madey, R.L. Kurtz, and H. Sambe, Phys. Rev. B33 (1988) 2099.ADSGoogle Scholar
  51. 45.
    K.M. Gibbs, W.L. Brown, and R.E. Johnson, Phys. Rev. B38 (1988) 11001.ADSGoogle Scholar
  52. 46.
    C.U.S. Larsson, A.S. Flodström, R. Nyholm, L. Incoccia, and F. Senf, J. Vac. Sci. Technol. A5 (1987) 3321.ADSGoogle Scholar
  53. 47.
    G.G. de Souza, P. Morin and I. Nenner, Phys. Rev. 34 (1986) 4770.CrossRefGoogle Scholar
  54. 48.
    P. Morin and I. Nenner, Phys. Rev. Lett.56 (1986) 1913.ADSCrossRefGoogle Scholar
  55. 49.
    M. Salmerón, A.M. Baró, and J.M. Rojo, Surf. Sci. 53 (1975) 689.ADSCrossRefGoogle Scholar
  56. 50.
    J.A.D. Matthew and Y. Komninos, Surf. Sci. 53 (1975) 716.ADSCrossRefGoogle Scholar
  57. 51.
    T.A. Green and D.R. Jennison, in ref.3, p.185.Google Scholar
  58. 52.
    T.A. Carlson and M.O. Krause, Phys. Rev. Lett. 14 (1965) 390.ADSCrossRefGoogle Scholar
  59. 53.
    T.A. Carlson and M.O. Krause, J. Chem. Phys. 56 (1972) 3206.ADSCrossRefGoogle Scholar
  60. 54.
    T.A. Carlson, in ref.3, p.169.Google Scholar
  61. 55.
    P. Feulner, D. Menzel, H.J. Kreuzer, and Z.W. Gortel, Phys. Rev. Lett. 53 (1984) 671.ADSCrossRefGoogle Scholar
  62. 56.
    R.H. Stulen, in ref.2, p.130.Google Scholar
  63. 57.
    R.A. Baragiola, T.E. Madey, A-M. Lanzillotto, Phys. Rev. B41 (1990) 9541.ADSGoogle Scholar
  64. 58.
    J.I. Gersten and N. Tzoar, Phys. Rev. B16 (1977) 945.ADSGoogle Scholar
  65. 59.
    R.E. Walkup and P. Avouris, Phys. Rev. Lett. 56 (1986) 524.ADSCrossRefGoogle Scholar
  66. R.E. Walkup and R.L. Kurtz, in ref.3, p.160.Google Scholar
  67. 60.
    A. Friedenberg and Y. Shapira, Surf. Sci. 87 (1970) 581.CrossRefGoogle Scholar
  68. 61.
    T.E. Madey, Science 234 (1986) 316.ADSCrossRefGoogle Scholar
  69. 62.
    M.D. Alvey and J.T. Yates, Jr., J. Am. Chem. Soc. 110 (1988) 1782.CrossRefGoogle Scholar
  70. 63.
    M.D. Alvey, M.J. Dresser and J.T. Yates, Phys. Rev. Lett. 56 (1986) 367.ADSCrossRefGoogle Scholar
  71. 64.
    A.L. Johnson, S.A. Joyce, and T.E. Madey, Phys. Rev. Lett. 61 (1988) 2578.ADSCrossRefGoogle Scholar
  72. 65.
    F.P. Netzer and T.E. Madey, Surface Sci. 119 (1982) 422.ADSCrossRefGoogle Scholar
  73. 66.
    Z. Miscovic, J. Vukanic, and T.E. Madey, Surface Sci. 169 (1986) 405.ADSCrossRefGoogle Scholar
  74. Z. Miscovic, J. Vukanic, and T.E. Madey, ibid. 141 (1984) 285.Google Scholar
  75. 67.
    C.Z. Dong, P. Nordlander and T.E. Madey, in ref.[4].Google Scholar
  76. 68.
    T.E. Madey, M. Polak, A.L. Johnson and M.M. Walczak, in ref.3, p.120.Google Scholar
  77. 69.
    M.L. Yu, J. Cables, and D.J. Vitkavage, J. Vac. Sci. Technol. A3 (1985) 1316.ADSGoogle Scholar
  78. 70.
    T.E. Madey, S.A. Joyce and C. Benndorf, in Physics and Chemistry of Alkali Metal Adsorption, H.P. Bonzel, A.M. Bradshaw and G. Ertl, eds., Elsevier, NY (1989) p.185.Google Scholar
  79. 71.
    P. Varga, Comments At. Mol. Phys. 23 (1989) 111.Google Scholar
  80. 72.
    P.J. Feibelman, Surf. Sci. 102 (1981) L51.ADSCrossRefGoogle Scholar
  81. 73.
    A.M. Lanzillotto, R.A. Baragiola, and T.E. Madey, to be published.Google Scholar
  82. 74.
    M.L. Knotek and J.E. Houston, J. Vac. Sci. Technol. 20 (1982) 544.ADSCrossRefGoogle Scholar
  83. 75.
    P. Avouris, R. Kawai, N.D. Lang, and D.M. Newns, Phys. Rev. Lett. 59 (1987) 2215.ADSCrossRefGoogle Scholar
  84. 76.
    O. Grizzi, M. Shi, H. Bu, J. Rabalais, and R. Baragiola, Phys. Rev. B41 (1990) 4789.ADSGoogle Scholar
  85. 77.
    M. Barat and W. Lichten, Phys. Rev. A6 (1972) 211.ADSGoogle Scholar
  86. 78.
    P. Williams, in ref.l, p.184.Google Scholar
  87. 79.
    .A. Mozumder, in Advances’in Radiation Chemistry, Vol I, M. Burton and J.L. Magee, eds., Wiley, NY (1969) 1.Google Scholar
  88. R.L. Fleischer, P.B. Price and R.M. Walker, Nuclear Tracks in Sol ids, Univ. of California Press, Berkeley (1975).Google Scholar
  89. 80.
    P.K. Haff, Appl. Phys. Lett. 29 (1976) 473.ADSCrossRefGoogle Scholar
  90. 81.
    B.U.R. Sundqvist, Nucí. Instr. Meth. B48 (1990) 517.ADSCrossRefGoogle Scholar
  91. 82.
    R. Baragiola, J. Nucl. Mater. 126 (1984) 313.ADSCrossRefGoogle Scholar
  92. 83.
    H.S. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol IV, Oxford Univ. Press, London (1969).Google Scholar
  93. 84.
    N. Bohr, Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. 18 (1948) 8.Google Scholar
  94. 85.
    R.A. Baragiola, Proc. 7th. Int. Conf. Atom. Coll. Solids, Moscow State Univ. (1977) p.106.Google Scholar
  95. 86.
    J.A. Schulz, P.T. Murray, R. Kamur, H-K. Hu and J.W. Rabalais, in ref.l, p.191.Google Scholar
  96. 87.
    J. Möller, M. Neumann and W. Heiland, Physica Scripta 76 (1983) 104.CrossRefGoogle Scholar
  97. 88.
    S.T. deZwart, T. Fried, D.O. Boerma, R. Hoekstra, A.G. Drentje, and A.L. Boers, Surf. Sci. 177 (1986) L939.CrossRefGoogle Scholar
  98. 89.
    U. Diebold and P. Varga, in ref.4.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. A. Baragiola
    • 1
  • T. E. Madey
    • 1
  1. 1.Department of Physics and Astronomy and Laboratory for Surface ModificationRutgers UniversityPiscatawayUSA

Personalised recommendations