Advertisement

Dynamical Interaction of Charges with Condensed Matter

  • F. Flores
Part of the Nato ASI Series book series (NSSB, volume 271)

Abstract

The use of swift ions as probes of the static and dynamic properties of matter dates from the earliest days of modern physics. In a pioneering paper [1], Bohr calculated the slowing down of swift alpha particles in matter. The interaction of ions with matter depends crucially on the ion velocity.

Keywords

Charge State Dielectric Function Auger Process Shell Cross Section Charge State Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bohr, Phil. Mag. 25 (1913) 16.Google Scholar
  2. 2.
    E. Fermi, Z.Phys. 29 (1927) 135.Google Scholar
  3. 3.
    E.J. Williams, Rev. Mod. Phys. 17 (1945) 217.ADSCrossRefGoogle Scholar
  4. 4.
    C.F.V. Weizsäcker, Z.Phys. 88 (1984) 612.Google Scholar
  5. 5.
    J. Lindhard, K. Dan, Vindensk. Selsk. Mat-Phys. Medd. 28 (1954) No.8.Google Scholar
  6. 6.
    N. Bohr, K. Dan. Vidensk. Selsk. Mat-Fys. Medd. 18 (1948) No.8.Google Scholar
  7. 7.
    W. Brandt, in Atomic Collisions in Solids, S. Datz, B.R. Appleton and C.D. Moak, eds., Plenum, New York (1975).Google Scholar
  8. 8.
    F. Guinea, F. Flores and P.M. Echenique, Phys. Rev. Lett. 47 (1981) 604.ADSCrossRefGoogle Scholar
  9. 9.
    H.D. Betz, Rev. Mod. Phys. 44 (1972) 465.ADSCrossRefGoogle Scholar
  10. 10.
    A. Arnau, P.M. Echenique, F. Flores and R.H. Ritchie; “Stopping power for Helium in Al”, and “Stopping power for protons in Al for the whole range of velocities”, to be published.Google Scholar
  11. 11.
    L. Hedin and S. Lundquist, Solid State Phys. 23 (1969) 1.CrossRefGoogle Scholar
  12. 12.
    B.I. Lundquist, Phys. Konderns. Mater. 6 (1967) 206.ADSCrossRefGoogle Scholar
  13. 13.
    H.A. Bethe, Ann. Phys. (Leipzig) 5 (1930) 325.ADSMATHGoogle Scholar
  14. 14.
    P.M. Echenique in this volume.Google Scholar
  15. 15.
    R.H. Ritchie, Phys. Rev. 114 (1959) 644.MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    J. Lindhard and A. Winther, K. Dan. Vindensk. Selsk. Mat. Fys. Medd. 34 (1964) No.4.Google Scholar
  17. 17.
    H. Bichsel, Rev. Mod. Phys. 60 (1988) 663.ADSCrossRefGoogle Scholar
  18. 18.
    P. Sigmund, this volume.Google Scholar
  19. 19.
    F. García-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, 1979.Google Scholar
  20. 20.
    M. Kato, J.Phys. Soc. Jpn 55 (1986) 1011.ADSCrossRefGoogle Scholar
  21. 21.
    P.M. Echenique, F. Flores and R.H. Ritchie, Solid State Physics 43 (1990) 235.CrossRefGoogle Scholar
  22. 22.
    D. Pines,Elementary Excitations in Solids, Benjamin, New York (1964).MATHGoogle Scholar
  23. 23.
    L. Van Hove, Phys. Rev. 95 (1954) 249.ADSMATHCrossRefGoogle Scholar
  24. 24.
    J. Hubbard, Proc. R. Soc. (London) A243 (1957) 336MathSciNetADSGoogle Scholar
  25. J. Hubbard, Proc. R. Soc. (London) A240 (1957) 539.MathSciNetADSGoogle Scholar
  26. 25.
    R.H. Ritchie and J.C. Ashley, J. Phys. Chem. Solids 26 (1965) 1689.ADSCrossRefGoogle Scholar
  27. 26.
    B.I. Lundquist, Phys. Status Solidi 32 (1969) 273.CrossRefGoogle Scholar
  28. 27.
    P.M. Echenique and R.H. Ritchie, Elhuyar 7 (1979) 1.Google Scholar
  29. 28.
    F. Guinea, F. Flores and P.M. Echenique, Phys. Rev. B25 (1982) 6209.ADSGoogle Scholar
  30. 29.
    T. Kaneto and Y.H. Ohtsuki, Phys. Stat. Solidi. B14 (1982) 491ADSGoogle Scholar
  31. Y.H. Othsuki, Charged Beam Interactions with Solids, Taylor (1983).Google Scholar
  32. 30.
    F. Sols and F. Flores, Phys. Rev. B30 (1984) 4878.ADSGoogle Scholar
  33. 31.
    J.D. Jackson and P.M. Platzman, Phys. Rev. B22 (1979) 88.ADSGoogle Scholar
  34. 32.
    M.C. Cross in Inelastic Ion-Surface Collision, N.H. Tolk, J.C. Tully, W. Heiland and C.W. White, eds., Academic Press, New York (1977).Google Scholar
  35. 33.
    V.P. Shevelko, Z. Phys. A287 (1978) 19.ADSGoogle Scholar
  36. 34.
    T. Kaneko, Nucl. Instrum. Methods B2 (1984) 491.ADSGoogle Scholar
  37. 35.
    H.C. Brinkman and H.A. BKramers, K. Wel. Amsterdam 33 (1930) 973.MATHGoogle Scholar
  38. 36.
    F. Sols and F. Flores, Nucl. Instrum. Methods 13 (1986) 171.CrossRefGoogle Scholar
  39. 37.
    F. Sols and F. Flores, Phys. Rev. A37 (1988) 1469.ADSGoogle Scholar
  40. 38.
    F.T. Chan and T. Eichler, Phys. Rev. Lett. 42 (1979) 58.ADSCrossRefGoogle Scholar
  41. 39.
    J.A. Phillips, Phys. Rev. 97 (1955) 404.ADSCrossRefGoogle Scholar
  42. 40.
    S.K. Allison, Rev. Mod. Phys. 30 (1958) 1137.ADSCrossRefGoogle Scholar
  43. 41.
    C.J. Sofield et al, Nucl. Instrumen. Methods 170 (1980) 257.ADSCrossRefGoogle Scholar
  44. 42.
    A. Itoh et al, Bull. Inst. Chem. Res. Kyoto University 60 (1983) 289.Google Scholar
  45. 43.
    P.M. Echenique and F. Flores, Phys. Rev. B35 (1987) 8249.ADSGoogle Scholar
  46. 44.
    L. Thomas, Proc. Cambridge Philos. Soc. 23 (1927) 542ADSMATHCrossRefGoogle Scholar
  47. E. Fermi, Z. Phys. 48 (1928) 73.ADSCrossRefGoogle Scholar
  48. 45.
    B. Vinter, Phys. Rev. B17 (1978) 2729.ADSGoogle Scholar
  49. 46.
    F. Guinea and F. Flores, J.Phys. C13 (1980) 4137.ADSGoogle Scholar
  50. 47.
    J.K. Norskov, Phys. Rev. B20 (1978) 446.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. Flores
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations