Advertisement

Electron Localization and Femtosecond Nonlinear Optical Responses in Liquids

  • Geraldine A. Kenney-Wallace
Part of the NATO ASI Series book series (NSSB, volume 193)

Abstract

The liquid and its electrical properties embrace concepts and theories from many scientific and engineering disciplines, whose different perspectives do not always appear compatible in interpreting microscopic behavior. In this respect, given my title, while the electrical properties of the liquid state are clearly related to electron transport phenomena, and photoionization, electron scattering, localization and solvation are important mechanistic steps linked to photoconductivity, conduction, electron mobility, space-charge effects and dielectric breakdown, precisely what are the roles of nonlinear optical responses? Indeed, do we fully understand nonlinear optical processes? For details on nonlinear responses, the reader is referred to a text on nonlinear optics and applications, which also summarizes the previous literature (Reintjes, 1984). Second harmonic generation, although usually not observed in isotropic systems through symmetry restrictions, can be a tool to observe surface structures via symmetry-breaking processes on surface films, the dynamic melting and recrystallization can be a tool to observe surface structures via symmetry-breaking processes on surface films, the dynamic melting and recrystallization. The induced-birefringence associated with strong space-charge effects around electrodes can be optically monitored through the optical Kerr effect. However, the goal of this chapter goes one step further: we propose to link the response of a disordered medium to a rapidly scattering excess electron to the intrinsic nonlinear polarizability response of the atoms or molecules along its trajectory.

Keywords

Laser Pulse Pump Pulse Probe Pulse Nonlinear Optical Response Optical Kerr Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M., Johnson, M.A., Levinger, N., and Lineberger, W.C., 1986, Phys. Rev. Lett., 57:976.ADSCrossRefGoogle Scholar
  2. Arbruster, M., Haberland, H., and Schindler, E.G., 1984, J. Phys. Chem., 88:3903.CrossRefGoogle Scholar
  3. Berne, B.J., and Decora, R., 1976, “Dynamic Light Scattering”, Wiley, New York.Google Scholar
  4. Castleman, Jr., A.W., and Keese, R.G., 1986, Ann. Rev. Phys. Chem., 37:525.ADSCrossRefGoogle Scholar
  5. Chase, W.J., and Hunt, J.W., 1975, J. Phys. Chem., 79:2835.CrossRefGoogle Scholar
  6. Christophorou, L.G. (ed.), 1981, “Electron and Ion Swarms”, Pergamon Press, New York (contains chapters by this author and many others on pertinent electron scattering problems with respect to electrical properties of liquids).Google Scholar
  7. Coe, J.V., Snodgrass, J., Freidhoff, C., McHugh, K., and Bower, K.H., 1987, J. Chem. Phys., 87:4302;ADSCrossRefGoogle Scholar
  8. J.V. Coe, D.R. Worsnop, and K.H. Bowen, to be published (1988).Google Scholar
  9. Dais, P., Gibb, V., Kenney-Wallace, G.A., and Reynolds, W.F., 1980, Chem. Phys., 47:407 and references therein to earlier NMR work.Google Scholar
  10. Etchepare, J., Kenney-Wallace, G.A., Grillon, G., Migus, A., and Chambaret, J.P., 1982, IEE J. Quant. Elec. QE, 18:1826.ADSCrossRefGoogle Scholar
  11. Fleming, G., 1987, personal communication; 1988, Faraday Discussions, 85:(in press).Google Scholar
  12. Frenkel, D., and McTague, J.P., 1980, J. Chem. Phys., 72:2801.ADSCrossRefGoogle Scholar
  13. Gaudel, Y., Migus, A., Martin, J.L., and Antonetti, A., 1984, Chem. Phys. Lett., 108:319; 1987, Phys. Rev. Lett., 58:1559.ADSCrossRefGoogle Scholar
  14. Green, B., and Farrow, R.C., 1982, J. Chem T Phys., 77:4779;ADSCrossRefGoogle Scholar
  15. J.M. Halbout and C.L. Tang, 1982, App. Phys. Lett., 40:765.ADSCrossRefGoogle Scholar
  16. Golombok, M., Kenney-Wallace, G.A., and Wallace S.C., 1985, J. Phys. Chem., 89:5160.CrossRefGoogle Scholar
  17. Hager, J., and Wallace, S.C., 1985, J. Phys. Chem., 89:3833;CrossRefGoogle Scholar
  18. J. Hager, G. Leach, D. Demmer, and S. C. Wallace, 1987, J. Phys. Chem., 91:3750.CrossRefGoogle Scholar
  19. Holubov, C., and Kenney-Wallace, G.A., 1986–88, unpublished data;Google Scholar
  20. C. Holubov, 1988, Ph.D. Thesis, University of Toronto.Google Scholar
  21. Hubbard, J., and Wolynes, P., 1979, J. Chem. Phys., 69:998.ADSCrossRefGoogle Scholar
  22. Huppert, D., Kenney-Wallace, G.A., and Rentzepis, P.M., 1981, J. Chem. Phys., 75:2265.ADSCrossRefGoogle Scholar
  23. Jonah, C.D., Romero, C., and Rahman, A., 1986, Chem. Phys. Lett., 123:209;ADSCrossRefGoogle Scholar
  24. M. Parrinello and A. Rahman, 1984, J. Chem. Phys 77 80:860.ADSCrossRefGoogle Scholar
  25. Jortner, J., and Even, U., 1983, J. Chem. Phys., 78:3445 and references therein.ADSCrossRefGoogle Scholar
  26. Kalpouzos, C., Lotshaw, W., McMorrow, D., and Kenney-Wallace, G.A., 1987, J. Phys. Chem., 91:2028; 1987, Chem. Phys. Lett., 136:323.CrossRefGoogle Scholar
  27. Kenney-Wallace, G.A., 1976, Chem. Phys. Lett., 43:529.ADSCrossRefGoogle Scholar
  28. Kenney-Wallace, G.A., and Jonah, C.D., 1976, Chem. Phys. Lett., 39:596.ADSCrossRefGoogle Scholar
  29. Kenney-Wallace, G.A., 1981, Adv. Chem. Phys., 47:585 (for a review of various issues, including spectroscopic techniques and earlier solvation work).Google Scholar
  30. Kenney-Wallace, G.A., and Jonah, C.D., 1982, J. Chem. Phys., 86:2572.CrossRefGoogle Scholar
  31. Kenney-Wallace, G.A., and Wallace, S.C., 1983, IEEE J. Quant. Elec. QE., 19:719.ADSCrossRefGoogle Scholar
  32. Kenney-Wallace, G.A., 1984, in “Applications of Picosecond Spectroscopy in Chemistry,” K.B. Eisenthal, ed., Reidel, New York, pp. 139–162.Google Scholar
  33. Kenney-Wallace, G.A., Dickson, T., and Golombok, M., 1987, Farad. Trans. II, part 10, p. 1825.Google Scholar
  34. Kenney-Wallace, G.A., Kalpouzos, C., Lotshaw, W., and McMorrow, D., 1988a, Int. J. Rad. Phys. and Chem., (in press).Google Scholar
  35. Kenney-Wallace, G.A., Paone, S., and Kalpouzos, C., 1988b, Faraday Discussions, 85:(in press).Google Scholar
  36. Kivelson, D., and Madden, P.A., 1982, J. Phys. Chem., 86:4244.CrossRefGoogle Scholar
  37. Kivelson, D., and Spears, K.G., 1985, J. Phys. Chem, 89:1899.CrossRefGoogle Scholar
  38. Ladanyi, B.M., 1983, J. Chem. Phys., 78:2189.ADSCrossRefGoogle Scholar
  39. Madden, P.A., and Tildesley, D.J., 1985, Mol. Phys., 55:969 and references therein.ADSCrossRefGoogle Scholar
  40. McMorrow, D., Lotshaw, W., Kenney-Wallace, G.A., 1987, Proceedings of International Laser Science Conference ILS-III, (in press, 1988) and 1988, Chem. Phys. Lett., 150:138.Google Scholar
  41. McMorrow, D., Lotshaw, W., and Kenney-Wallace, G.A., 1988a, IEEE J. Quant.-Elect. QE - 24, pp. 443–454.ADSCrossRefGoogle Scholar
  42. McMorrow, D., Lotshaw, W., and Kenney-Wallace, G.A., 1988b, Chem. Phys. Lett., 145:309.ADSCrossRefGoogle Scholar
  43. Miyasaka, H., Masuhura, H., and Mataga, N., 1987, Laser Chem., 7:119.CrossRefGoogle Scholar
  44. Nichols, A., and Chandler, D., 1986, J. Chem. Phys., 84:398 (D. Chandler in this NATO ASI volume).Google Scholar
  45. Reintjes, J., 1984, “Nonlinear Optical Parametric Processes in Liquids,” Academic Press, New York.Google Scholar
  46. Robinson, G.W., Thistlewaite, P.J., and Lee, J., 1986, J. Phys. Chem, 90:4244;CrossRefGoogle Scholar
  47. H.F. Hameka, G.W. Robinson, and C.J. Marsden, 1987, J. Phys. Chem., 91:3150.CrossRefGoogle Scholar
  48. Ruhman, S., Kohler, B., Joly, A., and Nelson, K., 1987b, Chem. Phys. Lett., 141:16.ADSCrossRefGoogle Scholar
  49. Ruhman, S., Williams, L. R, Joly, A., Kohler, B., and Nelson, K.A., 1987a, J. Phys. Chem., 91:2237.CrossRefGoogle Scholar
  50. Scarparo, M.A.F., Lee, J.H., Song, J.J., 1981, Opt. Lett. 6:193.ADSCrossRefGoogle Scholar
  51. Schnitker, J., Rossky, P., and Kenney-Wallace, G.A., 1986, J. Chem. Phys., 85:2986ADSCrossRefGoogle Scholar
  52. J. Schnitker and P. Rossky, 1987, J. Chem. Phys., 86:3462;ADSCrossRefGoogle Scholar
  53. J. Schnitker, P. Rossky, and K. Hota Kabbiri, 1988 (in press).Google Scholar
  54. Simon, J.D., 1988, Acc. Chem. Res., 21:128–134 (on time-resolved solvation studies of large polar molecules and comments on dielectric friction approaches).CrossRefGoogle Scholar
  55. Sprik, M., Impey, R., and Klein, H.L., 1985, J. Chem. Phys., 83:5802;ADSCrossRefGoogle Scholar
  56. M. Marchi, M. Sprik, and M.L. Klein, 1988, Faraday Discussion 85 no. 15 (in press), and references to earlier theoretical work.Google Scholar
  57. Templeton, E., and Kenney-Wallace, G.A., 1986, J. Phys. Chem., 90:5441; ibid., 1986, 90:2896.CrossRefGoogle Scholar
  58. Wallquist, A., Thirumalai, D., and Berne, B.J., 1986, J. Chem. Phys., 85:1583.ADSCrossRefGoogle Scholar
  59. Wang, Y., Crawford, M.H., HcAuliffe, M.J., and Eisenthal, K.B., 1980, Chem. Phys. Lett., 74:160.ADSCrossRefGoogle Scholar
  60. Wiesenfeld, J., and Ippen, E., 1980, Chem. Phys. Lett., 73:47.ADSCrossRefGoogle Scholar
  61. Yarwood, J., 1982, Annual Reports C, The Royal Society of Chemistry, London, pp. 157–197.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Geraldine A. Kenney-Wallace
    • 1
  1. 1.Lash Miller LaboratoriesUniversity of TorontoCanada

Personalised recommendations