Geometrical Perspectives of a Solvated Electron

  • David Chandler
Part of the NATO ASI Series book series (NSSB, volume 193)


The path integral formulation of quantum theory provides a framework to describe the behavior of solvated electrons. Feynman used the approach to treat the slow moving electron in ionic crystals — the prototypical polaron problem. We have extended this theory, drawing on theories of the liquid state, to analyze the localization transition and related phenomena found with excess electrons in fluids.


Excess Electron Path Integral Formulation Simple Fluid Geometrical Perspective Hard Sphere Fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baym, G., and Hermin, N.D., 1961, Determination of thermodynamic Green’s functions, J. Math. Phys., 2:232.ADSMATHCrossRefGoogle Scholar
  2. Chandler, D., 1984, Quantum theory of solvation, J. Phys. Chem., 88:3400.CrossRefGoogle Scholar
  3. Chandler, D., Singh, Y., and Richardson, D.M., 1984, Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents. J. Chem. Phys., 81:1975.Google Scholar
  4. Chandler, D., and Wolynes, P.G., 1981, Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids, J. Chem. Phys., 74:4078.ADSCrossRefGoogle Scholar
  5. Coker, D.F., Berne, B.J., and Thirumalai, D., 1987, Path integral Monte Carlo studies of the behavior of excess electrons in simple fluids, J. Chem. Phys., 86:5689.ADSCrossRefGoogle Scholar
  6. Davis, H.T., and Brown, R.B., 1975, Low-energy electrons in nonpolar fluids, Adv. Chem. Phys., 31:329.Google Scholar
  7. Feynman, R.P., 1955, Slow electrons in a polar crystal, Phys. Rev., 97:660.ADSMATHCrossRefGoogle Scholar
  8. Feynman, R.P., 1972, “Statistical Mechanics,” W.A. Benjamin, Reading, MA.Google Scholar
  9. Feynman, R.P., and Hibbs, A.R., 1965, “Quantum Mechanics and Path Integrals,” McGraw-Hill, New York.MATHGoogle Scholar
  10. Jortner, J., and Kestner, N.R., eds., 1973, “Electrons in Fluids,” Springer, Berlin.Google Scholar
  11. Jortner, J., and Kestner, N.R., eds., 1976, “Electron-Solvent and Anion-Solvent Interactions,” Elsevier, Amsterdam.Google Scholar
  12. Laria, D., and Chandler, D., 1987, Comparative study of theory and simulation calculations for excess electrons in simple fluids, J. Chem. Phys., 87:4088.ADSCrossRefGoogle Scholar
  13. Malescio, G., and Parrinello, M., 1987, Polaron theory of electrons solvated in molten salts, Phys. Rev. A., 35:897.CrossRefGoogle Scholar
  14. Nichols, III A.L., Chandler, D., Singh, Y., and Richardson, D.H., 1984, Excess electrons in simple fluids. II. Numerical results for hard sphere solvents, J. Chem. Phys., 81:5109.ADSCrossRefGoogle Scholar
  15. Nichols, III A.L., Chandler, D., 1986, Excess electrons in simple fluids. III. Role of solvent polarization, J. Chem. Phys., 84:398.ADSCrossRefGoogle Scholar
  16. Nichols, III A.L., and Chandler, D., 1987, Excess electrons in simple fluids. IV. Real time behavior, J. Chem. Phys., 87:6671.ADSCrossRefGoogle Scholar
  17. Parrinello, M., and Rahman, A., 1984, Study of an F center in molten KC1, J. Chem. Phys., 80:860.ADSCrossRefGoogle Scholar
  18. Schnitker, J., and Rossky, P.J., 1987, Quantum simulation study of the hydrated electron, J. Chem. Phys., 86:3471.ADSCrossRefGoogle Scholar
  19. Sprik, M., Klein, M.L., and Chandler, D., 1985, Simulation of an excess electron in a hard sphere fluid, J. Chem. Phys., 83:3042.ADSCrossRefGoogle Scholar
  20. Sprik, M., Impey, R.W., and Klein, H.L., 1985, Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations, J. Chem. Phys., 83:5802.ADSCrossRefGoogle Scholar
  21. Wallqvist, A., Thirumalai, D., and Berne, B.J., 1986, Localization of an excess electron in water clusters, J. Chem. Phys., 85:1583.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David Chandler
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations