Advertisement

Abstracts of Poster Papers

  • Elena Aprile
  • T. Armagan
  • S. Karagözlü
  • H. Gürbüz
  • G. Ascarelli
  • Shalom Baer
  • Charles H. Byers
  • Timothy C. Scott
  • H. Faidas
  • L. G. Christophorou
  • Gordon R. Freeman
  • Victor H. GehmanJr.
  • Ronald J. Gripshover
  • M. P. De Haas
  • J. H. Warman
  • O. A. Anisimov
  • A. Hummel
  • Raul C. Muñoz
  • Richard A. Holroyd
  • S. Ochsenbein
  • J. Sass
  • Arian L. Pregenzer
  • Yosuke Sakai
  • Hiroshi Kojima
  • Hiroaki Tagashira
  • Kenneth G. Spears
  • John Gong
  • Martha Wach
  • M. Szpakowska
  • O. B. Nagy
Part of the NATO ASI Series book series (NSSB, volume 193)

Abstract

A gridded ionization chamber has been used to study the maximum energy resolution achievable with liquid argon and liquid xenon. With its high density and atomic number, liquid xenon is a particularly interesting filling for a high resolution detector to be used in many different applications. Our specific interest is to develop a large volume high resolution imaging liquid xenon instrument for high energy gamma-ray astrophysics as well as to search for nuclear double beta decay of Xe-136 with much better sensitivity than existing instruments. The energy resolution of liquid argon or xenon ionization detectors is expected to be close to that achievable with Ge (Li) spectrometers, given the measured W values and the small Fano factors calculated by Doke. However, the best experimental results so far are nearly an order of magnitude worse than the theoretical values. In order to understand the reasons for this discrepancy, we have carried out several measurements with both liquids. The electric field dependence of conversion electrons has been measured up to 11 kV/cm with optimized grid geometry and liquid purity. In liquid argon, we obtain 2.7% fwhm for the resolution of the dominant 976 keV electron line in the Bi-207 spectrum. This value, the best reported so far in the literature, is still a factor of seven worse than the Fano limit. We find that our results can be explained if we take into account the additional statistical fluctuations associated with incomplete charge collection from delta-electron tracks produced in large number along the path of the primary ionizing particle. The strong recombination rate on these heavily ionizing delta-electrons is the limiting process to the ultimate energy resolution of noble liquid detectors, unless very high fields are used. Alternatively, one can increase the electron mobility.

Keywords

Pulse Electric Field Sandia National Laboratory Breakdown Strength Liquid Argon Inertial Confinement Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faidas, H., and Christophorou, L.G., 1987, J. Chem. Phys., 86:2505.ADSCrossRefGoogle Scholar
  2. Faidas, H., and Christophorou, L.G., 1988, “Radiation Physics and Chemistry” (in press).Google Scholar
  3. Feynman Lectures on Physics, 1965, Vol. 3.Google Scholar
  4. Anisimov, O.A., Warman, J.M., De Haas, M.P., and De Leng, H., 1987, Chem. Phys. Lett., 137:365.ADSCrossRefGoogle Scholar
  5. De Haas, M.P., Warman, J.M., Infelta, P.P., and Hummel, A., 1975, Chem. Phys. Lett., 31:382.ADSCrossRefGoogle Scholar
  6. Lefkowitz, S.H., and Trifunac, A.D., 1984, J. Phys. Chem., 88:77.CrossRefGoogle Scholar
  7. Smith, J.P., Lefkowitz, S., and Trifunac, A.P., 1982, J. Phys. Chem., 86:4347.CrossRefGoogle Scholar
  8. Trifunac, A.D., Sauer, M.C., Jr., and Jonah, C.D., 1985, Chem. Phys. Lett., 113:316.ADSCrossRefGoogle Scholar
  9. Warman, J.M., Infelta, P.P., De Haas, M.P., and Hummel, A., 1976, Chem. Phys. Lett., 43:321.ADSCrossRefGoogle Scholar
  10. Holroyd, R.A., and Sham, T.K., 1985, J. Phys. Chem., 89:2909.CrossRefGoogle Scholar
  11. Miroshnicenko, V.P., Newskij, P.L., Rodionov, B.U., 1982, Elementary Particles and Cosmic Rays, Moscou, Energoizdat.Google Scholar
  12. Munoz, R.C., Cumming, J.B., and Holroyd, R.A., 1986, J. Chem. Phys., 85:1104.ADSCrossRefGoogle Scholar
  13. Pregenzer, A.L., 1985, J. Appl. Phys., 58:4509.ADSCrossRefGoogle Scholar
  14. Pregenzer, A.L., and Marder B.M., 1986, J. Appl. Phys., 60:3821.ADSCrossRefGoogle Scholar
  15. Pregenzer, A.L., and Ringham, D.R., 1986, Beam Divergence and Space Charge Effects for an Electrohydrodynamically-Driven Liquid Ion Source,” Particle Beam Fusion Progress Report, July-December, (Albuquerque, NM, Sandia National Laboratories, to be published).Google Scholar
  16. Pregenzer, A.L., and Woodworth, J.R., 1988, Submitted to J. Appl. Phys.Google Scholar
  17. Nagy, O.B., Huanda, M. wa, and Nagy, J.B., 1978, J. Chem. Soc., Faraday Trans. 1, 74:2210.Google Scholar
  18. Nagy, O.B., Muanda, M. wa, and Nagy, J.B., 1961, J. Phys. Chem., 83:1979.Google Scholar
  19. Parbhoo, B., and Nagy, O.B., 1986, J. Chem. Soc., Faraday Trans. 1, 82:1789.Google Scholar
  20. Szpakowska, M., Uruska, I., and Zielkiewicz, J., 1985, J. Chem. Soc., Dalton Trans., p. 1849.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Elena Aprile
    • 1
  • T. Armagan
    • 2
  • S. Karagözlü
    • 3
  • H. Gürbüz
    • 3
  • G. Ascarelli
    • 4
  • Shalom Baer
    • 5
  • Charles H. Byers
    • 6
  • Timothy C. Scott
    • 6
  • H. Faidas
    • 7
    • 8
  • L. G. Christophorou
    • 7
    • 8
  • Gordon R. Freeman
    • 9
  • Victor H. GehmanJr.
    • 10
  • Ronald J. Gripshover
    • 10
  • M. P. De Haas
    • 11
    • 12
  • J. H. Warman
    • 11
    • 12
  • O. A. Anisimov
    • 11
    • 12
  • A. Hummel
    • 11
    • 12
  • Raul C. Muñoz
    • 13
  • Richard A. Holroyd
    • 13
  • S. Ochsenbein
    • 14
    • 15
  • J. Sass
    • 14
    • 15
  • Arian L. Pregenzer
    • 16
  • Yosuke Sakai
    • 17
  • Hiroshi Kojima
    • 17
  • Hiroaki Tagashira
    • 17
  • Kenneth G. Spears
    • 18
  • John Gong
    • 18
  • Martha Wach
    • 18
  • M. Szpakowska
    • 19
  • O. B. Nagy
    • 19
  1. 1.Physics DepartmentColumbia UniversityNew YorkUSA
  2. 2.Faculty of Science, Physics DepartmentTrakya UniversityEdirneTurkey
  3. 3.Faculty of Science, Physics DepartmentYildiz UniversityIstanbulTurkey
  4. 4.Physics DepartmentPurdue UniversityW. LafayetteUSA
  5. 5.Department of Physical ChemistryThe Hebrew UniversityJerusalemIsrael
  6. 6.Chemical Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  7. 7.Atomic, Molecular, and High Voltage Physics Group, Health and Safety Research DivisionOak Ridge National LaboratoryOak RidgeUSA
  8. 8.Department of PhysicsThe University of TennesseeKonxvilleUSA
  9. 9.Chemistry DepartmentUniversity of AlbertaEdmontonCanada
  10. 10.Director Energy BranchNaval Surface Weapons CenterDahlgrenUSA
  11. 11.Interuniversity Reactor InstituteDelftThe Netherlands
  12. 12.Institute of Chemical Kinetics and CombustionNovosibirskUSSR
  13. 13.Chemistry DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
  14. 14.SINVilligenSwitzerland
  15. 15.CERNGenevaSwitzerland
  16. 16.Sandia National LaboratoriesAlbuquerqueUSA
  17. 17.Department of Electrical EngineeringHokkaido UniversitySapporoJapan
  18. 18.Chemistry DepartmentNorthwestern UniversityEvanstonUSA
  19. 19.Unite Cico, Laboratoire de Chimie Organique PhysiqueUniversite Catholique de LouvainLouvain la NeuveBelgium

Personalised recommendations