Electric Conduction in Dielectric Liquids

  • J. P. Gosse
Part of the NATO ASI Series book series (NSSB, volume 193)


Conduction in dielectric liquids has been reviewed many times (Lewis, 1959; Sharbaugh and Watson, 1962; Félici, 1971; Gallagher, 1975). Since then, few major improvements of the understanding of conduction mechanisms have been achieved: all the possible mechanisms had been previously put forward. The main contribution of the latest works has been the experimental verification of some of the above models and, more especially, the definition of their domains of validity. There are many reasons for such a slow progress. It is impossible to control the nature and concentration of impurities acting on the electric conduction of very resistive liquids, conductivity remaining more sensitive to impurities than physicochemical techniques. Industry uses liquid insulants only for particular applications; they were essentially mineral oil and chlorobiphenyl liquids which gave full satisfaction, and it needed the prohibition of the PCBs to bring about a new interest in conduction studies.


Nematic Liquid Crystal Polar Liquid Kinetic Rate Constant Dielectric Friction Walden Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accascina, F., Petrucci, S., and Fuoss, R.M., 1959, The conductance of Bu4 N BPh4, in Acetonitrile-Carbon Tetrachloride mixtures at 25C, J. Amer. Chem. Soc., 81:1301CrossRefGoogle Scholar
  2. Atten, P., and Horeau, R., 1972, Stabilité hydrodynamique des liquides isolants soumis a une injection unipolaire, J. de Mecanique, 11:471.MATHGoogle Scholar
  3. Atten, P., and Lacroix, J.C., 1979, Non-linear hydrodynamic stability of liquids subjected to unipolar injection, J. de Mecanique, 18:469.MathSciNetADSMATHGoogle Scholar
  4. Bjerrum, N., 1926, quoted in “The principles of Electrochemistry” D. A. Mac Innes, Dover Publ., New York, 1961, Kgl. Danoke Vidensk. Selskab, 9:7.Google Scholar
  5. Blossey, D.F., 1974, One-dimensional Onsager theory for carrier injection in metal-insulator systems, Phys. Rev. B., w9:5183.CrossRefGoogle Scholar
  6. Bockris, J. O’M., and Reddy, A.K.N., 1970, in: “Modern Electrochemistry”, Vol. 1 and 2, Plenum Press, New York.Google Scholar
  7. Briere, G., Cauquis, G., Rose, B., et Serve, D., 1969, Relation entre la conduction electrique des liquides polaires et leurs propriétés electrochimiques, J. Chimie Phys., 66 (1):44.Google Scholar
  8. Bronger, W., Kranz, H.G., and Moller, K., 1981, Electrolytical phenomena in liquid hydrocarbons of thermally high-stressed rectifier transformers, in: “Proc. 7th Int. Conf. on Conduction and Breakdown in Dielectric Liquids,” Berlin, W. F. Schmidt, éd., I.E.E.E. El. Ins. Soc., n° 81 CH 1594–1.Google Scholar
  9. Casanovas, J., Grob, R., Garbay, H., and Crine, J.P., 1985, Transient currents in silicone oils subjected to voltage steps with polarity reversal, I.E.E.E. Trans, on E.I., EI-20:183.Google Scholar
  10. Charle, K.P., and Willig, F., 1978, Generalized one-dimensional Onsager model for charge carrier injection into insulators, Chem. Phys. Lett., 57 (2):253.ADSCrossRefGoogle Scholar
  11. Coetzee, J.F., and Cunningham, G.P., 1965, Evaluation of single ion conductivities in Acetonitrile, Nitrobenzene and Nitromethane using Bu4 N BPh4 as reference electrolyte, J. Amer. Chem. Soc., 87 (12):2529.CrossRefGoogle Scholar
  12. Conway, B.E., 1970, Some aspects of the thermodynamic and transport behaviour of electrolytes, in: “Physical Chemistry” Vol. 9A/Electrochemistry, Eyring H., ed., Academic Press, New York.Google Scholar
  13. Creagh, L.T., 1973, Nematic liquid crystal materials for displays, Proc. I.E.E.E., 61:814.Google Scholar
  14. Debye, P., 1942, Reaction rates in ionic solutions, Trans. Electrochem. Socl., 82:265.CrossRefGoogle Scholar
  15. Denat, A., Gosse, B., and Gosse, J.P., 1979, Ion injections in hydrocarbons, J. Electrostatics, 7:205.CrossRefGoogle Scholar
  16. Denat, A., Gosse, B., and Gosse, J.P., 1982a, Electrical conduction of solutions of an anionic surfactant in hydrocarbons, J. Electrostatics, 12:197.CrossRefGoogle Scholar
  17. Denat, A., Gosse, B., Gosse, J.P., 1982b, High field DC and AC conductivity of electrolyte solutions in hydrocarbons, J. Electrostatics, 11:179.CrossRefGoogle Scholar
  18. Denat, A., Gosse, J.P., and Gosse, B., 1987, Conduction du cyclohexane très pur en geometrie pointe-plan, Rev. Phys. Appl., 22:1103.CrossRefGoogle Scholar
  19. Eigen, M., 1954, Über die Kinetik sehr schnell verlaufender Ionenreaktionen in wasseriger Losung, Z. Phys. Chem. NF, 1:176.CrossRefGoogle Scholar
  20. Eigen, H., and De Maeyer, L., 1974, Theoretical Basis of Relaxation Spectroscopy, in: “Technique of Organic Chemistry”, 8, 895, Friess, S.L., Levis, E.S., Weissberger, A., eds., Interscience Publ., New, York.Google Scholar
  21. Felici, N.J., 1971, D.C. conduction in liquid dielectrics, A survey of recent progress, Part I, Direct Current, 2:90, Part II, Direct, Current, 2:147.Google Scholar
  22. Felici, N., Gosse, B., and Gosse, J.P., 1976, Aspects electrochimiques et electrohydrodynamiques de la conduction des liquides isolants, R.G.E., 85 (11):861.Google Scholar
  23. Felici, N., 1983, Conduction des liquides dielectriques sous haute tension et regime de la double couche aux electrodes, Compt. Rend. Acad. Sc. Paris, 296 (II):523.Google Scholar
  24. Franck, H.S., 1966, Solvent models and the interpretation of ionization and solvation phenomena, in: “Chemical Physics of Ionic Solutions,” B.E. Conway and R.G. BarraSas, ed., J. Wiley & sons, New York.Google Scholar
  25. Fuoss, R.M., 1959, Dependence of the Walden product on dielectric constant, Proc. N.A.S., 45:807.ADSCrossRefGoogle Scholar
  26. Fuoss, R.M., and Hirsch, E., 1960, Single ion conductances in non aqueous solvents, J. Amer. Chem. Soc., 82:1013.CrossRefGoogle Scholar
  27. Gallagher, T.J., 1975, “Simple Dielectric Liquids,” Oxford Univ. Press, Oxford.Google Scholar
  28. Honda, T., Evereart, J., and Persoons, A., 1979, Dependence of the field dissociation effect on electric field strength, in: “Non-linear behaviour of Molecules, Atoms and Ions in Electric, Magnetic or Electromagnetic Fields,” L. Neel, ed., Elsevier, Amsterdam.Google Scholar
  29. Hopfinger, E.J., and Gosse, J.P., 1971, Charge transport by self-generated turbulence in insulating liquids submitted to unipolar injection, Phys. Fluids, 14:1671.ADSCrossRefGoogle Scholar
  30. Hubbard, J., and Onsager, L., 1977, Dielectric dispersion and dielectric friction in electrolyte solutions. I, J. Chem. Phys., 67:4850.ADSCrossRefGoogle Scholar
  31. Janz, G.J., and Tomkins, R.P.T., 1972, in: “Non aqueous Electrolyte Handbook,” Vol. 1, Academic Press, New York.Google Scholar
  32. Lacroix, J.C., Atten, P., and Hopfinger, E.J., 1975, Electro-convection in a dielectric liquid layer subjected to unipolar injection, Phys. Fluid Mech., 69:539.ADSMATHCrossRefGoogle Scholar
  33. Langevin, M.P., 1903, Recombinaison et mobilites des ions dans les gaz, Ann. Chim. et Phys., 28:433.Google Scholar
  34. Lewis, T.J., 1959, The electric strength and high-field conductivity of dielectric liquids, in: “Progress in Dielectrics 1,” J.B. Birks, ed., Heywood & Co, London.Google Scholar
  35. Nemamcha, M., Gosse, J.P., Denat, A., and Gosse, B., 1987, Temperature dependence of ion injection by metallic electrodes into non-polar dielectric liquids, I.E.E.E. Trans. on EI, EI-22:459.Google Scholar
  36. Novotny, V., and Hopper, M.A., 1979, Transient conduction of weakly dissociating species in dielectric fluids, J. Electrochem. Soc., 126:925.CrossRefGoogle Scholar
  37. Onsager, L., 1934, Deviations from Ohm’s law in weak electrolytes, J. Chem. Phys., 2:599.ADSCrossRefGoogle Scholar
  38. Parkman, N., 1978, Some properties of solid-liquid composite dielectric systems, I.E.E.E. Trans EI, EI-13:289.Google Scholar
  39. Persoons, A., 1974, Field dissociation effect and chemical relaxation in electrolyte solutions of low polarity, J. Phys. Chem., 78:1210.CrossRefGoogle Scholar
  40. Randriamalala, Z., Denat, A., Gosse, J.P., Gosse, B., 1985, Field-enhanced dissociation, the validty of Onsager’s theory in surfactant solutions, I.E.E.E. Trans. EI, EI-20, 167.Google Scholar
  41. Robinson, R.A., and Stokes, R.H., 1959, in: “Electrolyte solutions”, Butterworths, London.Google Scholar
  42. Schmidt, W.F., 1984, Electronic conduction processes in dielectric liquids, I.E.E.E. Trans. EI, EI-13:389.Google Scholar
  43. Schneider, J.M., and Watson, P.K., 1970, Electrohydrodynamic stability of space-charge limited currents in dielectric liquids, Phys. Fluids, 19:1948.ADSCrossRefGoogle Scholar
  44. Sharbaugh, A.H., and Watson, P.K., 1962, Conduction and breakdown in liquid dielectrics, in: “Progress in Dielectrics 4,” J.B. Birks, ed., Heywood & Co, London.Google Scholar
  45. Yasufuku, S., Umemura, T., and Tanii, T., 1979, Electric conduction phenomena and carrier mobility behavior in dielectric fluids, I.E.E.E. Trans. Electr. Insul., EI-14:28.CrossRefGoogle Scholar
  46. Zahn, H., Ohki, Y., Rhoads, K., Lagasse, H., and Matsuzawa, H., 1985, Electrooptic charge injection and transport measurements in highly purified water and water/ethylene glycol mixtures, I.E.E.E. Trans, on EI, EI-20:199.Google Scholar
  47. Zwanzig, R., 1963, Dielectric friction on a moving ion, J. Chem Phys., 38:1603.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. P. Gosse
    • 1
    • 2
  1. 1.Laboratoire d’Electrostatique et de Matériaux DielectriquesGrenoble CedexFrance
  2. 2.Laboratoire Associé à l’Université, J. FOURIER greenoble IFrance

Personalised recommendations