Advertisement

Electron Scattering and Mobility in Dielectric Liquids

  • Gordon R. Freeman
Part of the NATO ASI Series book series (NSSB, volume 193)

Abstract

When a pulse of X-rays hits a dielectric liquid a cascade of electrons is produced in the liquid. The absorbed X-rays set a few high energy electrons in motion. The high energy electrons ionize molecules and set many lower-energy electrons in motion, which in turn produce many more electrons of still lower energy, and so on, until there is a large number of low energy electrons in the liquid.

Keywords

Electron Mobility High Energy Electron Dielectric Liquid Liquid Argon Trap Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basak, S., and Cohen, H.H., 1979, Deformation potential theory for the mobility of excess electrons in liquid argon, Phys. Rev. B., 20:3404.ADSCrossRefGoogle Scholar
  2. Cipollini, N.E., and Allen, A.O., 1977, Electron mobilities in liquid tetramethylsilane at temperatures up to the critical point, J. Chem. Phys., 67:131.ADSCrossRefGoogle Scholar
  3. Cohen, M.H., and Lekner, J., 1967, Theory of hot electrons in gases, liquids, and solids, Phys. Rev., 158:305.ADSCrossRefGoogle Scholar
  4. Dodelet, J.-P., and Freeman, G.R., 1977a, Electron mobilities in alkanes through the liquid and critical regions, Can. J. Chem., 55:2264.CrossRefGoogle Scholar
  5. Dodelet, J.-P., and Freeman, G.R., 1977b, Electron mobilities in fluids through the liquid and critical regions: Isomeric butenes, Can. J. Chem., 55:2893.CrossRefGoogle Scholar
  6. Dodelet, J.-P., Shinsaka, K., Kortsch, U., and Freeman, G.R., 1973, Electron ranges in liquid alkanes, dienes, and alkynes: Range distribution function in hydrocarbons, J. Chem. Phys., 59:2376.ADSCrossRefGoogle Scholar
  7. Dodelet, J.-P., Shinsaka, K., and Freeman, G.R., 1976, Molecular structure effects on electron ranges and mobilities in liquid hydrocarbons: Chain branching and olefin conjugation: Mobility model, Can J. Chem., 54:744.CrossRefGoogle Scholar
  8. Feynman, R.P., Leighton, R.B., and Sands, S., 1964, “The Feynman Lectures on Physics,” Vol. 2, Addison-Wesley, Reading, MA, p. 7–7.Google Scholar
  9. Floriano, M.A., and Freeman, G.R., 1986, Electron transport in liquids: Effect of unbalancing the sphere-like methane molecules by deuteration, and comparison with argon, krypton, and xenon, J. Chem. Phys., 85:1603.ADSCrossRefGoogle Scholar
  10. Freeman, G.R., 1966, Electrons and ions in the radiolysis of liquids, lecture notes for Gordon Conference on Radiation Chemistry, New Hampton, N.Y., p. 3.Google Scholar
  11. Freeman, G.R., 1972, Energy decay of energetic electrons in liquids, Quaderni dell’ Area di Ricerca dell’ Emilia-Romagna, 2:55.Google Scholar
  12. Freeman, G.R., 1987a, Aharonov-Bohm effect observed by electron holography and by electron transmission through split conductors, Phys. Rev. Lett., (submitted).Google Scholar
  13. Freeman, G.R., 1987b, Quantum interference effect for two atoms radiating a single photon, Phys. Rev. Lett., (submitted).Google Scholar
  14. Freeman, G.R., 1987c, Ionization and charge separation in irradiated materials, in: “Kinetics of Nonhomogeneous Processes,” G.R. Freeman, ed., Wiley, New York, Chapter 2.Google Scholar
  15. Freeman, G.R., 1987d, Stochastic model of charge scavenging in liquids under irradiation by electrons or photons, in: Kinetics of Nonhomogeneous Processes,” G.R. Freeman, ed., Wiley, New York, Chapter 6.Google Scholar
  16. Freeman, G.R., 1987e, Estimation of electron mobilities in simple fluids near the critical point, Phil. Mag. Lett., 56:47.ADSCrossRefGoogle Scholar
  17. Freeman, G.R., 1987f, SI units of frequency, angular velocity, Planck’s constant and -ft, Metrologia, 23:221.ADSCrossRefGoogle Scholar
  18. Gee, N., and Freeman, G.R., 1983, Effects of molecular properties onGoogle Scholar
  19. electron transport in hydrocarbon fluids, J. Chem. Phys., 78:1951.Google Scholar
  20. Gee, N., and Freeman, G.R., 1986, Electron transport in dense gases: Limitations on the Ioffe-Regel and Mott criteria, Can. J. Chem., 64:1810.CrossRefGoogle Scholar
  21. Gee, N., and Freeman, G.R., 1987, Electron mobilities, free ion yields, and electron thermalization distances in liquid, long-chain hydrocarbons, J. Chem. Phys., 86:5716.ADSCrossRefGoogle Scholar
  22. Grangier, P., Aspect, A., and Vique, J., 1985, Quantum interference effect for two atoms radiating a single photon, Phys. Rev. Lett., 54:418.ADSCrossRefGoogle Scholar
  23. Gushchin, E. M., Kruglov, A.A., and Obodovskii, I.M., 1982, Electron dynamics in condensed argon and xenon, Sov. Phys. JETP., 55:650.Google Scholar
  24. Gyorgy, I., and Freeman, G.R., 1979, Effects of density and temperature on electron transport in hydrocarbon fluids, J. Electrostatics, 7:239.CrossRefGoogle Scholar
  25. Huang, S.S.-S., and Freeman, G.R., 1978a, Electron mobilities in gaseous, critical, and liquid xenon: Density, electric field, and temperature effects: Quasilocalization, J. Chem. Phys., 68:1355.ADSCrossRefGoogle Scholar
  26. Huang, S.S.-S., and Freeman, G.R., 1978b, The gravity effect and the mobility of electrons in critical neopentane, J. Chem. Phys. 69:1585.ADSCrossRefGoogle Scholar
  27. Huang, S.S.-S., and Freeman, G.R., 1980, Electron transport in gaseous, critical and liquid benzene and toluene, J. Chem. Phys., 72:2849.ADSCrossRefGoogle Scholar
  28. Huang, S.S.-S., and Freeman, G.R., 1981, Electron transport in gaseous and liquid argon: Effects of density and temperature, Phys. Rev A, 24:714.ADSCrossRefGoogle Scholar
  29. Jacobsen, F.M., Gee, N., and Freeman, G.R., 1986, Electron mobility in liquid krypton as functions of density, temperature, and electric field strength, Phys. Rev A, 34:2329.ADSCrossRefGoogle Scholar
  30. Jahnke, J.A., Meyer, L., and Rice, S.A., 1971, Zero-field mobility of excess electrons in fluid argon, Phys. Rev A, 3:734.ADSCrossRefGoogle Scholar
  31. Jou, F.-Y., and Freeman, G.R., 1976, Optical spectra of electrons solvated in liquid ethers: Temperature effects, Can J. Chem., 54:3693.CrossRefGoogle Scholar
  32. Kuan, D.-Y., and Ebner, C., 1981, Theory of excess-electron states in classical rare-gas fluids, Phys. Rev A, 23:285.ADSCrossRefGoogle Scholar
  33. Lekner, J., 1967, Motion of electrons in liquid argon, Phys. Rev., 158:130.ADSCrossRefGoogle Scholar
  34. Lekner, J., 1968, Mobility maxima in the rare-gas liquids, Phys. Lett., 27A:341.ADSGoogle Scholar
  35. Lekner, J., and Bishop, A.R., 1973, Electron mobility in simple fluids near the critical point, Phil. Mag., 27:297.ADSCrossRefGoogle Scholar
  36. Loveland, R.J., Le Comber, P.G., and Spear, W.E., 1972, Experimental evidence for electronic bubble states in liquid neon, Phys. Lett., 39A:225.ADSGoogle Scholar
  37. Hozunder, A., and Magee, J.L., 1967, Theory of radiation chemistry. VIII. Ionization of nonpolar liquids by radiation in the absence of an external electric field, J. Chem. Phys., 47:939.ADSCrossRefGoogle Scholar
  38. Munoz, R.C., and Ascarelli, G., 1983, Hall mobility of electrons injected into fluid neopentane (dimethylpropane) along the liquid-vapor coexistence line between the triple and critical points, Phys. Rev. Lett., 51:215.ADSCrossRefGoogle Scholar
  39. Ostermeier, R.M., and Schwarz, K.W., 1972, Motion of charge carriers in normal helium-four, Phys. Rev A, 5:2510.ADSCrossRefGoogle Scholar
  40. Reitz, J.R., Milford, F.J., and Christy, R.W., 1979, “Foundations of Electromagnetic Theory,” 3rd edn., Addison-¥esley, Reading, MA, p. 308.Google Scholar
  41. Ryan, T.G., and Freeman, G.R., 1978, Electron mobilities and ranges in methyl substituted pentanes through the liquid and critical regions, J. Chem. Phys., 68:5144.ADSCrossRefGoogle Scholar
  42. Sakai, Y., Bo’ttcher, H., and Schmidt, W.F., 1982, Excess electrons in liquid hydrogen, liquid neon, and liquid helium, J. Electrostatics, 12:89.CrossRefGoogle Scholar
  43. Schwarz, K.W., 1972, Charge-carrier mobilities in liquid helium at the vapor pressure, Phys. Rev A, 6:837.ADSCrossRefGoogle Scholar
  44. Schwarz, K.W., 1975, Mobilities of charge carriers in superfluid helium, Adv. Chem. Phys., 33:1.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gordon R. Freeman
    • 1
  1. 1.Chemistry DepartmentUniversity of AlbertaEdmontonCanada

Personalised recommendations