Photoconductivity, Conduction Electron Energies, and Excitons in Simple Fluids

  • I. T. Steinberger
Part of the NATO ASI Series book series (NSSB, volume 193)


The objective of this paper is to present nonpolar fluids having very simple electronic properties. It will be shown that in liquids of the heavier rare gases electron energies and electron transport are very similar to those in the corresponding crystalline solids, so that for these liquids even the nomenclature characterizing electronic states in crystals has a distinct and well-defined meaning. This will be shown with respect to the band gap, conduction band minimum, and excitons. Remarkably, for the dense liquids of argon, krypton, and xenon there is no need to invoke concepts typical to amorphous semiconductors, like different optical and mobility gaps. Thus, these liquids may serve as reference models for more involved nonpolar liquids, e.g., of hydrocarbons. Moreover, since the density of a fluid can be easily varied, studying the evolution of the electronic properties of fluid argon, krypton, and xenon with the increase of the density from that of a dilute gas up to the triple-point liquid can, in fact, serve to define the conditions for the coming into existence of “crystal-like” electronic behavior.


Electron Mobility Atomic Line Conduction Band Minimum Liquid Argon Amorphous Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asaf, U. and Steinberger, I.T., 1971, Wannier excitons in liquid xenon, Phys. Lett., 34A;207.ADSGoogle Scholar
  2. Asaf, U. and Steinberger, I.T., 1974, Photoconductivity and electron transport parameters in liquid and solid xenon, Phys. Rev. B, 10:4464.ADSCrossRefGoogle Scholar
  3. Ascarelli, G., 1986, Calculation of the mobility of electron injected in liquid argon, Phys. Rev. B, 33:5825.CrossRefGoogle Scholar
  4. Baldini, G., 1962, Ultraviolet absorption of solid argon, krypton and xenon, Phys. Rev., 128:1562.CrossRefGoogle Scholar
  5. Basak, S. and Cohen, H.H., 1979, Deformation potential theory for the excess electrons in liquid argon, Phys. Rev. B, 20:3404.CrossRefGoogle Scholar
  6. Beaglehole, D., 1965, Reflection studies of excitons in liquid xenon, Phys. Rev. Lett., 15:207.CrossRefGoogle Scholar
  7. Birks, J.B., 1970, “Photophysics of Aromatic Molecules”, Wiley — Interscience, London, New York, Sidney, Toronto.Google Scholar
  8. Broomall, J.R., Johnson, W.D. and Onn, D.G., 1976, Density dependence of the electron surface barrier for fluid He and He, Phys. Rev. B., 14:2819.ADSCrossRefGoogle Scholar
  9. Chandler, D., Schweizer, K.S. and Wolynes, P.G., 1982, Electronic states of typologically disordered systems: Exact solution of the mean spherical model for liquids, Phys. Rev. Lett., 49:110.ADSCrossRefGoogle Scholar
  10. Chen, Y.C., Cunningham, J.E. and Flynn, C.P., 1984, Dependence of rare-gas-adsorbate dipole moment on substrate work function, Phys. Rev. B, 30:7317.ADSCrossRefGoogle Scholar
  11. Cohen, M.H. and Lekner, J., 1967. Theory of hot electrons in gases, liquids and solids, Phys. Rev., 158:305.ADSCrossRefGoogle Scholar
  12. Davis, H.T. and Brown, R.G., 1965, Low-energy electrons in nonpolar fluids, in “Advances in Chemical Physics XXXI”, I. Prigogine and S.A. Rice, eds. Wiley, New York, London, Sidney.Google Scholar
  13. Dexter, D.L. and Knox, R.S., 1965, “Excitons”, Interscience, New York, London, Sidney.Google Scholar
  14. Eckhardt, C.J. and Nichols, L.F., 1972, Observation of excitons in a molecular liquid: specular reflection spectrum of a-methylnaphta- lene, Phys. Rev. Lett., 29:1221.ADSCrossRefGoogle Scholar
  15. Faber, T.E., 1972, “An Introduction to the Theory of Liquid Metals”, Cambridge University Press.Google Scholar
  16. Holroyd, R.A. and Allen, M., 1971, Energy of excess electrons in nonpolar liquids by photoelectric work function measurements, J. Chem. Phys., 54:5014.ADSCrossRefGoogle Scholar
  17. Holroyd, R.A. and Cippolini, N.E., 1978, Correspondence of conduction band minima and electron mobility maxima in dielectric liquids, J. Chem. Phys., 69:50.CrossRefGoogle Scholar
  18. Huang, S.S.S. and Freeman, G.R., 1978, Electron mobilities in gaseous, critical, and liquid xenon: Density, electric field, and temperature effects: Quasi localization, J. Chem Phys., 68:1355.ADSCrossRefGoogle Scholar
  19. Huang, S.S.S. and Freeman, G.R., 1981, Electron transport in gaseous and liquid argon: Effects of density and temperature, Phys. Rev. A, 24:714.ADSCrossRefGoogle Scholar
  20. Inagaki, T., 1972, Absorption spectra of pure liquid benzene in the ultraviolet region, J. Chem. Phys., 57:2526.ADSCrossRefGoogle Scholar
  21. Jacobsen, F.M., Gee, N. and Freeman, G.R., 1986, Electron mobility in liquid krypton as functin of density, temperature and electric field strength, Phys. Rev. A, 34:2329.Google Scholar
  22. Kayanuma, Y., 1986, Wannier exciton in microcrystals, Solid State Comm, 59:405.ADSCrossRefGoogle Scholar
  23. Knox, R.S., 1963, “Theory of Excitons”, Academic Press, New York and London.MATHGoogle Scholar
  24. Kohler, A.M., 1987, “Density effects on Rydberg states and ionization energies of molecules”, Ph.D. Thesis, Hamburg University.Google Scholar
  25. Kohn, W. and Sham, L.J., 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140:A1133.MathSciNetCrossRefGoogle Scholar
  26. Kuntz, P.J. and Schmidt, W.F., 1982, A classical Monte Carlo model for the injection of electrons into gaseous argon, J. Chem. Phys., 76;1136.ADSCrossRefGoogle Scholar
  27. Laporte, P., Saile, V., Reininger, R., Asaf, U. and Steinberger, I.T., 1983, Photoionization of xenon below the atomic ionization potential, Phys. Rev. A, 28:3613.ADSCrossRefGoogle Scholar
  28. Laporte, P. and Steinberger, I.T., 1977, Evolution of excitonic bands in fluid xenon, Phys. Rev. A, 15:2538.ADSCrossRefGoogle Scholar
  29. Laporte, P., Subtil, Y.L., Asaf, U., Steinberger, I.T. and Wind, S., 1980, Intermediate and Wannier excitons in fluid xenon, Phys. Rev. Lett., 45:2138.ADSCrossRefGoogle Scholar
  30. Laporte, P., Subtil, J.L., Reininger, R., Saile, V., Bernstorff, S. and Steinberger, I.T., 1980, Evolution of intermediate excitons in fluid argon and krypton, Phys. Rev. B, 35:6270.ADSCrossRefGoogle Scholar
  31. Laporte, P., Subtil, J.L., Reininger, R., Saile, V. and Steinberger, I.T., 1985, Wannier excitons in liquid and solid krypton, Chem. Phys. Lett., 122:525.ADSCrossRefGoogle Scholar
  32. Lekner, J., 1967, Motion of electrons in liquid argon, Phys. Rev., 158:130.CrossRefGoogle Scholar
  33. Lekner, J. and Bishop, A.R., 1973, Electron mobility in simple fluids near the critical point, Philos. Mag., 127:297.ADSCrossRefGoogle Scholar
  34. Le Sar, R. and Kopelman, R., 1977, Vibrational excitons, resonant energy transfer and local structure in liquid benzene, J. Chem. Phys., 66:5035.ADSCrossRefGoogle Scholar
  35. Logan, D.E. and Wolynes, P.G., 1984, Self-consistent theory of localization in topologically disordered systems, Phys. Rev. B, 29:6560.ADSCrossRefGoogle Scholar
  36. Messing, I. and Jortner, J., 1977, Adiabatic polarization energy in a simple dense fluid, Chemical Physics, 24:189.CrossRefGoogle Scholar
  37. Messing, I., Raz, B. and Jortner, J., 1977, Experimental evidence for Wannier impurity states in doped rare-gas fluids, Chemical Physics, 23:23.ADSCrossRefGoogle Scholar
  38. Miller, L.S., Howe, S. and Spear, W.E., 1968, Charge transport in solid and liquid Ar, Kr and Xe, Phys. Rev., 166:871.ADSCrossRefGoogle Scholar
  39. Mott, N.F. and Davis, E.A., 1979, “Electronic Processes in Non-crystalline Materials”, Oxford University Press, 2nd ed.Google Scholar
  40. Nishikawa, M., 1985, Electron mobility in fluid argon: Application of a deformation potential theory, Chem. Phys. Lett., 114:271.ADSCrossRefGoogle Scholar
  41. Plenkiewicz, B., Jay-Gerin, J.P., Plenkiewicz, P. and Bachelet, G.B. 1986, Conduction band energy of excess electrons in liquid argon, Eurohpysics Letters, 1:455.ADSCrossRefGoogle Scholar
  42. Raz, B. and Jortner, J., 1969, Energy of the quasi-free electron state in liquid and solid rare gases, Chem. Phys. Lett., 4:155.ADSCrossRefGoogle Scholar
  43. Raz, B. and Jortner, J., 1971, Energy of the quasi-free electron state in dense neon, Chem. Phys. Lett., 9:224.ADSCrossRefGoogle Scholar
  44. Reininger, R., Asaf, U. and Steinberger, I.T., 1982, The density dependence of the quasi-free electron state in fluid xenon and krypton, Chem. Phys. Lett., 90:287.ADSCrossRefGoogle Scholar
  45. Reininger, R., Asaf, U. and Steinberger, I.T., 1983a, Photo Conductivity and the evolution of energy bands in fluid xenon, Phys. Rev. B, 28:3193.ADSCrossRefGoogle Scholar
  46. Reininger, R., Asaf, U. and Steinberger, I.T., 1983b, RelationshipGoogle Scholar
  47. between the energy VQ of the quasi free electron and its mobility in fluid argon, krypton and xenon, Phys. Rev. B, 28:4426.Google Scholar
  48. Reininger, R., Saile, V., Laporte, P. and Steinberger, I.T., 1984a, Photo-conduction in rare gas fluids doped by small organic molecules, Chemical Physics, 89:473.ADSCrossRefGoogle Scholar
  49. Reininger, R., Steinberger, I.T., Bernstorff, S., Saile, V. and Laporte, P., 1984b, Extrinsic photoconductivity in xenon doped fluid argon and krypton, Chemical Physics, 86:189ADSCrossRefGoogle Scholar
  50. Reininger, R., 1985, Private communication.Google Scholar
  51. Reininger, R., Saile, V., Findley, G., Laporte, P. and Steinberger, I.T., 1985a, Photoconduction in fluid rare gases doped with molecular impurities, p. 253 in “Photophysics and Photochemistry Above 6eV”. F. Lahmani, ed., Elsevier, Amsterdam.Google Scholar
  52. Reininger, R., Saile, V. and Laporte P., 1985b, Photoionization yield spectra below the atomic ionization limit in xenon, Phys. Rev. Lett., 54:1146.ADSCrossRefGoogle Scholar
  53. Rice, S.A. and Jortner, J., 1966, Do excitons states exist in the liquid phase?, J. Chem. Phys., 44:4470.ADSCrossRefGoogle Scholar
  54. Schnyders, H., Rice, S.A. and Heyer, L., 1966, Electron drift velocities in liquied argon and krypton at low electric field strengths, Phys. Rev., 150:127.ADSCrossRefGoogle Scholar
  55. Schwentner, N., Koch, E.G. and Jortner, J., 1985, “Electronic Excitations in Condensed Rare Gases”, Springer Tracts in Modern Physics, G. Hohler, ed., Springer, Berlin-Heidelberg-New York-Tokyo.Google Scholar
  56. Shinsaka, K. and Freeman, G.R., 1974, Electron mobilities and ranges in solid neopentane: Effect of the liquid-solid phase change, Can. J. Chem., 52:3556.CrossRefGoogle Scholar
  57. Sonntag, B., 1977, Dielectric and optical properties, in: “Rare Gas Solids”, M.L. Klein and J.A. Venables, Eds., Academic Press, London, New York, San Francisco.Google Scholar
  58. Springett, B.E., Jortner, J. and Cohen, M.H., 1968, Stability criterion for the localization of an excess electron in a nonpolar fluid, J. Chem Phys., 48:2720.ADSCrossRefGoogle Scholar
  59. Steinberger, I.T., Atluri, C. and Schnepp, O., 1970, Optical constants of solid xenon in the VUV region, J. Chem. Phys., 52:2723.ADSCrossRefGoogle Scholar
  60. Steinberger, I.T. and Asaf, U., 1973, Band structure parameters of solid and liquid xenon, Phys. Rev. B, 8:914.ADSCrossRefGoogle Scholar
  61. Steinberger, I.T. and Baer, S., 1987, Electronic excitations of pure and doped rare gas fluids, Phys. Rev. B, 36:1358.ADSCrossRefGoogle Scholar
  62. Steinberger, I.T. and Zeitak, R., 1986, Estimation of electron mobilities in simple nonpolar fluids, Phys Rev. B, 34:3471.ADSCrossRefGoogle Scholar
  63. Tauchert, W., Jungblut, H. and Schmidt, W.F., 1977, Photoelectric determination of VQ values and electron ranges in some cryogenic liquids, Canad. J. Chem., 55:1860.CrossRefGoogle Scholar
  64. Von Zdrojewski, W., Rabe, J.G. and Schmidt, W.F., 1980, Photoelectric determination of V -values in solid rare gases, Z.Natureforsch., 35A:672.ADSGoogle Scholar
  65. Woolf, M.A. and Rayfield, G.W., 1965, Energy of negative ions in liquid helium by photoelectric injection, Phys. Rev. Lett., 15:235.ADSCrossRefGoogle Scholar
  66. Zallen, R., 1983, “The Physics of Amorphous Solids”, Wiley, New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • I. T. Steinberger
    • 1
  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations