Advertisement

Adversary Problem Solving by Machine

  • M. R. B. Clarke

Abstract

Methods of problem solving by machine have been discussed in a previous chapter. In principle, the adversary makes very little difference; adversary problem-solving graphs are just special cases of and/or graphs (Nilsson, 1980). Nevertheless specialized techniques have been developed, many of them highly efficient problem-independent search procedures.

Keywords

Terminal Node Legal Move Game Tree Computer Game Playing Human Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Adelson-Velskii, G. M., Arlazarov, V. L., Bitman, A. R., Zhivotovskiy, A. A., & Uskov, A. V. (1970). Programming a computer to play chess. Russian Mathematical Surveys, 25, 221–262.CrossRefGoogle Scholar
  2. Arlazarov, V. L., & Futer, A. L. (1979). Computer analysis of a rook end-game. In E. W. Elcock & D. Michie (Eds.), Machine intelligence (Vol. 9 ). New York: Wiley.Google Scholar
  3. Baudet, G. M. (1978). On the branching factor of the alpha-beta pruning algorithm. Artificial Intelligence, 10, 173–199.CrossRefGoogle Scholar
  4. Beal, D. F. (1989). Null-move quiescence search. Advances in computer chess 5 (in press).Google Scholar
  5. Berliner, H. J. (1974). Chess as problem-solving: The development of a tactics analyzer. Doctoral dissertation, Computer Science Department, Carnegie-Mellon University.Google Scholar
  6. Berliner, H. J. (1979). The B* tree search algorithm: A best-first proof procedure. Artificial Intelligence, 12, 23–40.CrossRefGoogle Scholar
  7. Berliner, H. J. (1980). Backgammon computer program beats world-champion. Artificial Intelligence, 14, 205–220.CrossRefGoogle Scholar
  8. Berliner, H. J. (1986). Computer chess at Carnegie-Mellon University. In D. F. Beal (Ed.), Advances in computer chess 4. Oxford: Pergamon Press.Google Scholar
  9. Campbell, M. S. & Marsland, T. A. (1983). A comparison of minimax tree search algorithms. Artificial Intelligence, 20, 347–367.CrossRefGoogle Scholar
  10. Clarke, M. R. B. (1977). A quantitative study of king and pawn against king. In M. R. B. Clarke (Ed.), Advances in computer chess 1. Edinburgh: Edinburgh University Press.Google Scholar
  11. Condon, J. H., & Thompson, K. (1983). Belle chess hardware. In M. R. B. Clarke (Ed.), Advances in computer chess 2. Edinburgh: Edinburgh University Press.Google Scholar
  12. Fairbairn, J. T. (1977). Invitation to Go. Oxford: Oxford University Press.Google Scholar
  13. Findler, N. V., Sicherman, G. L., & McCall, B. (1983). A multi-strategy gaming environment. In M. A. Bramer (Ed.), Computer game-playing, theory and practice. Chichester: Ellis Horwood.Google Scholar
  14. Frey, P. W. (1983). Chess skill in man and machine. New York: Springer-Verlag.CrossRefGoogle Scholar
  15. Greenblatt, R. D., Eastlake, D. E., & Crocker, S. D. (1967). The Greenblatt chess program. Proceedings of the AFIPS Fall Joint Computer Conference, 31, 801–810.Google Scholar
  16. Halpern, J., & Moses, Y. (1986). A guide to the logics of knowledge and belief. Proceedings, AAAI-86. Los Altos, CA: Morgan Kaufman.Google Scholar
  17. Iwamoto, K. (1976). Go for beginners. New York: Pantheon.Google Scholar
  18. Lehner, P. E. (1983). Strategic planning in Go. In M. A. Bramer (Ed.), Computer game-playing, theory and practice. Chichester: Ellis-Horwood.Google Scholar
  19. Michie, D. (1980). A prototype knowledge refinery. In M. R. B. Clarke (Ed.), Advances in computer chess 2. Edinburgh: Edinburgh University Press.Google Scholar
  20. Nau, D. S. (1980). An investigation into the causes of pathology in games. Artificial Intelligence, 19, 257–278.CrossRefGoogle Scholar
  21. Newell, A., Shaw, J., & Simon, H. A. (1958). Chess-playing programs and the problem of complexity. IBM Journal of Research and Development, 2, 320–335.CrossRefGoogle Scholar
  22. Nilsson, N. (1980). Principles of artificial intelligence. Palo Alto: Toga.Google Scholar
  23. Palay, A. J. (1982). The B* tree search algorithm-New results. Artificial Intelligence, 19, 145–163.CrossRefGoogle Scholar
  24. Pearl, J. (1980). scour: A simple game-searching algorithm with proven optimal properties. Loss Angeles: Cognitive Systems Laboratory, School of Engineering and Applied Science, University of California.Google Scholar
  25. Pearl, J. (1983). Game-searching theory: Survey of recent results. In M. A. Bramer (Ed.), Computer game-playing, theory and practice. Chichester: Ellis Horwood.Google Scholar
  26. Pitrat, J. (1977). A chess combination program which uses plans. Artificial Intelligence, 8, 275–321.CrossRefGoogle Scholar
  27. Reitman, W., & Wilcox, B. (1979). Modelling tactical analysis and problem solving in Go. Proceedings of the Tenth Annual Pittsburgh Conference on Modelling and Simulation, 2133–2148.Google Scholar
  28. Rosenbloom, P. S. (1982). A world championship level Othello program. Artificial Intelligence, 19, 279–320.CrossRefGoogle Scholar
  29. Samuel, A. L. (1967). Some studies in machine learning using the game of checkers-Recent progress. IBM Journal of Research and Development, 11, 601.CrossRefGoogle Scholar
  30. Sander, P. T., & Davies, D. J. M. (1983). A strategic approach to the game of Go. In M. A. Bramer (Ed.), Computer game-playing, theory and practice. Chichester: Ellis Horwood.Google Scholar
  31. Shannon, C. E. (1950). Programming a computer for playing chess. Philosophical Magazine, 41, 256–275.Google Scholar
  32. Slagle, J. R., & Dixon, J. (1969). Experiments with some programs which search game trees. Journal of the Association for Computing Machinery, 16, 189–207.CrossRefGoogle Scholar
  33. Slate, D. J., & Atkin, L. R. (1977). Chess 4.5-The Northwestern University chess program. In P. W. Frey (Ed.), Chess skill in man and machine. New York: Springer-Verlag.Google Scholar
  34. Stockman, G. (1979). A minimax algorithm better than alpha-beta? Artificial Intelligence, 12, 179–196.CrossRefGoogle Scholar
  35. Thompson, K. (1986). Retrograde analysis of certain endgames. ICCA Journal (September).Google Scholar
  36. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  37. Wilkins, D. E. (1979). Using patterns and plans to control search. AIM-329, Computer Science Department, Stanford University.Google Scholar
  38. Wilkins, D. E. (1982). Using knowledge to control tree searching. Artificial Intelligence, 18, 1–51.CrossRefGoogle Scholar
  39. Zobrist, A. L. (1970). Feature extraction and representation for pattern recognition and the game of Go. Ph.D. thesis, University of Wisconsin.Google Scholar
  40. Zobrist, A. L., & Carlsson, F. R. (1973). An advice-taking chess computer. Scientific American, 228, 92–105.CrossRefGoogle Scholar

Further Reading

  1. Beal, D. F. (Ed.). (1986). Advances in computer chess 4. Oxford: Pergamon Press.Google Scholar
  2. Bramer, M. (Ed.). (1983). Computer game-playing, theory and practice. Chichester: Ellis Horwood.Google Scholar
  3. Clarke, M. R. B. (Ed.). (1977). Advances in computer chess 1. Edinburgh: Edinburgh University Press.Google Scholar
  4. Clarke, M. R. B. (Ed.). (1980). Advances in computer chess 2. Edinburgh: Edinburgh University Press.Google Scholar
  5. Clarke, M. R. B. (Ed.). (1983). Advances in computer chess 3. Oxford: Pergamon Press.Google Scholar
  6. Frey, P. W. (1983). Chess skill in man and machine. New York: Springer-Verlag.CrossRefGoogle Scholar
  7. Newborn, M. (1975). Computer chess. New York: Academic Press.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. R. B. Clarke
    • 1
  1. 1.Department of Computer Science, Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations