Advertisement

Dynamics of Van der Waals Complexes: Beyond Atom-Diatom Systems

  • Jeremy M. Hutson
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

A major goal of spectroscopic studies of Van der Waals molecules is to obtain information on intermolecular forces. In order to do this, methods must be available to calculate spectroscopic properties from a proposed potential energy surface. For small Van der Waals molecules, such as the rare gas — hydrogen halide systems, such calculations can be performed using a variety of theoretical methods, based either on solution of coupled differential equations or on expanding the wavefunction in a product basis of angular and radial functions. In the atom—diatom case, there is seldom any need for dynamical approximations: the full close-coupling equations can be solved without approximation even on relatively small computers, and standard packages for doing this are available.1,2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Hutson, BOUND computer code, distributed via Collaborative Computational Project No. 6 of the UK Science and Engineering Research Council, on Heavy Particle Dynamics.Google Scholar
  2. 2.
    J. Tennyson, Comp. Phys. Commun. 42, 257 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    S. Bratoz and M. L. Martin, J. Chem. Phys. 42, 1051 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed., Clarendon Press, Oxford (1968)MATHGoogle Scholar
  5. 5.
    R. G. Gordon, J. Chem. Phys. 51, 14 (1969).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969)ADSMathSciNetCrossRefGoogle Scholar
  7. W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4815 (1969)ADSCrossRefGoogle Scholar
  8. 7.
    B. R. Johnson, J. Comp. Phys. 13, 445 (1973).ADSCrossRefGoogle Scholar
  9. 8.
    J. C. Light and R. B. Walker, J. Chem. Phys. 65, 4272 (1976)ADSCrossRefGoogle Scholar
  10. E. B. Stechel, R. B. Walker and J. C. Light, J. Chem. Phys. 69, 3518 (1978).ADSCrossRefGoogle Scholar
  11. G. A. Parker, T. G. Schmalz and J. C. Light, J. Chem. Phys. 73, 1757 (1980)ADSCrossRefGoogle Scholar
  12. 10.
    M. H. Alexander, J. Chem. Phys. 81, 4510 (1984).ADSCrossRefGoogle Scholar
  13. 11.
    D. E. Manolopoulos, J. Chem. Phys. 85, 6425 (1986).ADSCrossRefGoogle Scholar
  14. 12.
    M. H. Alexander and D. E. Manolopoulos, J. Chem. Phys. 86, 2044 (1987).ADSCrossRefGoogle Scholar
  15. 13.
    C. J. Ashton, M. S. Child and J. M. Hutson, J. Chem. Phys. 78, 4025 (1982).ADSCrossRefGoogle Scholar
  16. 14.
    A. M. Dunker and R. G. Gordon, J. Chem. Phys. 64, 4984 (1976).ADSCrossRefGoogle Scholar
  17. 15.
    B. R. Johnson, J. Chem. Phys. 69, 4678 (1978).ADSCrossRefGoogle Scholar
  18. 16.
    G. Danby, J. Phys. B 16, 3393 (1983)ADSCrossRefGoogle Scholar
  19. 17.
    D. E. Manolopoulos, Ph. D. thesis, Cambridge University (1988).Google Scholar
  20. 18.
    J. M. Hutson, Chem. Phys. Lett. 151, 565 (1988).ADSCrossRefGoogle Scholar
  21. 19.
    R. J. Le Roy and J. van Kranendonk, J. Chem. Phys. 61, 4750 (1974).ADSCrossRefGoogle Scholar
  22. 20.
    J. Tennyson and B. T. Sutcliffe, J. Chem. Phys. 77, 4061 (1982).ADSCrossRefGoogle Scholar
  23. 21.
    I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).ADSCrossRefGoogle Scholar
  24. 22.
    Z. Baie and J. C. Light, J. Chem. Phys. 85, 4594 (1986); J. Chem. Phys. 86, 3065 (1987).Google Scholar
  25. 23.
    S.L. Holmgren, M. Waldman and W. Klemperer, J. Chem. Phys. 69, 1661 (1978).ADSCrossRefGoogle Scholar
  26. 24.
    J. M. Hutson and B. J. Howard, Mol. Phys. 43, 493 (1981).ADSCrossRefGoogle Scholar
  27. 25.
    J. M. Hutson and B. J. Howard, Mol. Phys. 45, 769 (1982).ADSCrossRefGoogle Scholar
  28. 26.
    J. M. Hutson, J. Chem. Phys. 89, 4550 (1988).ADSCrossRefGoogle Scholar
  29. 27.
    R. C. Cohen, K. L. Busarow, K. B. Laughlin, G. A. Blake, M. Havenith, Y. T. Lee and R. J. Saykally, J. Chem. Phys. 89, 4494 (1988).ADSCrossRefGoogle Scholar
  30. 28.
    J. M. Hutson, D. C. Clary and J. A. Beswick, J. Chem. Phys. 81, 4474 (1984)ADSCrossRefGoogle Scholar
  31. A. C. Peet, D. C. Clary and J. M. Hutson, J. Chem. Soc., Faraday Trans. II 83, 1719 (1987).CrossRefGoogle Scholar
  32. 29.
    S. Green, J. Chem. Phys. 64, 3463 (1976).ADSCrossRefGoogle Scholar
  33. 30.
    J. M. Hutson, J. Chem. Phys. 92, to be published (1990).Google Scholar
  34. 31.
    G. Brocks, A. Van der Avoird, B. T. Sutcliffe and J. Tennyson, Mol. Phys. 50, 1025 (1983).ADSCrossRefGoogle Scholar
  35. 32.
    G. T. Fraser, R. D. Suenram and L. H. Coudert, J. Chem. Phys. 90 6077 (1989) and references therein.Google Scholar
  36. 33.
    L. H. Coudert and J. T. Hougen, J. Mol. Spec. 130, 86 (1988).ADSCrossRefGoogle Scholar
  37. 34.
    A. E. Barton and B. J. Howard, Faraday Discuss. Chem. Soc. 73, 45 (1982).Google Scholar
  38. 35.
    H. S. Gutowsky, T. D. Klots, C. Chuang, C. A. Schmuttenmaer and T. Emilsson, J. Chem. Phys. 86, 569 (1987).ADSCrossRefGoogle Scholar
  39. 36.
    T. D. Klots, C. Chuang, R. S. Ruoff, T. Emilsson and H. S. Gutowsky, J. Chem. Phys. 86, 5315 (1987).ADSCrossRefGoogle Scholar
  40. 37.
    J. M. Hutson, J. A. Beswick and N. Halberstadt, J. Chem. Phys. 90, 1337 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jeremy M. Hutson
    • 1
  1. 1.Department of ChemistryUniversity of DurhamDurhamEngland

Personalised recommendations