Advertisement

Structure and Dynamics of Size Selected Clusters

  • Udo Buck
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

The infrared photodissociation of weakly bound complexes has attracted much interest in recent years.1,2 In these experiments a vibrational mode of one molecular component is excited by an infrared photon. If the photon energy is larger than the binding energy of the complex, the complex predissociates. Typically, the clusters are prepared in a supersonic expansion and the dissociation is measured by monitoring the depletion of the molecular beam as a function of the laser frequency. The measured fraction dissociated Pdiss is given by 3,4
$${P_{diss}} = 1 - \exp [ - \sigma (v)F/(hv)],$$
(1)
where σ(v) is the dissociation cross section, F the laser fluence and hv the photon energy. In principle, these dissociation spectra contain three observables:
  1. 1)

    the line shift Δv which is caused by the interaction of the excited oscillator with the surrounding molecules and thus gives information on the structure of the cluster;

     
  2. 2)

    the linewidth Γ which, if interpreted as homogeneously broadened, gives information on the lifetime and thus on the dynamical coupling of the molecular vibrational mode to the internal cluster modes;

     
  3. 3)

    the dissociation cross section v which is directly related to the absorption and decay process.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Miller, J.Phys.Chem. 90: 330 (1986)Google Scholar
  2. Science 240: 447 (1988)Google Scholar
  3. 2.
    K.C. Janda and C.R. Bieler, preprintGoogle Scholar
  4. 3.
    M.P. Casassa, D.S. Bonse and K.C. Janda, J.Chem.Phys. 74: 5044 (1981)ADSCrossRefGoogle Scholar
  5. 4.
    M.A. Hoffbauer, K. Liu, C.F. Giese amd W.R. Gentry, J.Chem.Phys. 78: 5567 (1983)ADSCrossRefGoogle Scholar
  6. 5.
    J.A. Beswick, in: “Structure and Dynamics of weakly bound molecular complexes”, A. Weber, ed., Reidel, Dordrecht (1987), p. 563Google Scholar
  7. 6.
    U. Buck, J.Phys.Chem. 92: 447 (1988)Google Scholar
  8. 7.
    U. Buck and H. Meyer, Phys.Rev.Lett. 52: 109 (1984); J.Chem.Phys. 84: 4854 (1986)Google Scholar
  9. 8.
    F. Huisken, H. Meyer, Ch. Lauenstein, R. Sroka and U. Buck, J.Chem.Phys. 84: 1042 (1986)ADSCrossRefGoogle Scholar
  10. 9.
    U. Buck, F. Huisken, Ch. Lauenstein, H. Meyer and R. Sroka, J.Chem.Phys. 87: 6276 (1987)ADSCrossRefGoogle Scholar
  11. 10.
    F. Huisken and T. Pertsch, J.Chem.Phys. 86: 106 (1987)ADSCrossRefGoogle Scholar
  12. 11.
    U. Buck, Ch. Lauenstein, A. Rudolph, B. Heijmen, S. Stolte and J. Reuss, Chem.Phys.Lett. 144: 396 (1988)ADSCrossRefGoogle Scholar
  13. 12.
    F. Huisken and M. Stemmler, Chem.Phys. 132: 351 (1989)ADSCrossRefGoogle Scholar
  14. 13.
    F. Huisken and T. Pertsch, Chem.Phys. 126: 213 (1988)ADSCrossRefGoogle Scholar
  15. 14.
    F. Huisken and M. Stemmler, Chem.Phys.Lett. 144: 391 (1988)ADSCrossRefGoogle Scholar
  16. 15.
    U. Buck, X.J. Gu, Ch. Lauenstein and A. Rudolph, J.Phys.Chem. 92: 5561 (1988)CrossRefGoogle Scholar
  17. 16.
    U. Buck, X.J. Gu, M. Hobein and Ch. Lauenstein, Chem.Phys.Lett. (1989)Google Scholar
  18. 17.
    Ch. Lauenstein, Dissertation, University of Göttingen (1989)Google Scholar
  19. 18.
    U. Buck, in: “Atomic and Molecular Beam Methods”, G. Scoles, ed., Oxford, New York (1988), Ch. 18Google Scholar
  20. 19.
    U. Buck, X.J. Gu, Ch. Lauenstein and A. Rudolph, J.Chem.Phys. (1989)Google Scholar
  21. 20.
    U. Buck, Ch. Lauenstein, R. Sroka and M. Tolle, Z.Phys. D 10: 303 (1988)ADSCrossRefGoogle Scholar
  22. 21.
    R. Ahlrichs, S. Brode, U. Buck, M. DeKieviet and B. Schmidt, Z. Phys. D (1989)Google Scholar
  23. 22.
    R.A. Nemenoff, J. Snir and H.A. Scheraga, J.Phys.Chem. 82: 2504 (1978)CrossRefGoogle Scholar
  24. 23.
    F.T. Marchese, P.K. Mehrotra and D.L. Beveridge, J.Phys.Chem. 86: 2592 (1982)CrossRefGoogle Scholar
  25. 24.
    W.L. Jorgensen, J.Phys.Chem. 90: 1276 (1986)CrossRefGoogle Scholar
  26. 25.
    J.C. Greer, R. Ahlrichs and I.V. Hertel, Z.Phys.D. (1989), in pressGoogle Scholar
  27. 26.
    O.O. Westlund and R.M. Lynden—Bell, Mol.Phys. 60: 1189 (1987)Google Scholar
  28. 27.
    A.D. Buckingham, J.Chem.Soc.Faraday Trans. 56: 753 (1960)CrossRefGoogle Scholar
  29. 28.
    K.G.H. Baldwin and R.O.Watts, Chem.Phys.Lett. 129: 237 (1986)ADSCrossRefGoogle Scholar
  30. J.Chem.Phys. 87: 873 (1987)Google Scholar
  31. 29.
    B. Heijmen, C. Liedenbaum, S. Stolte and J. Reuss, Z.Phys.D 6: 199 (1987)ADSCrossRefGoogle Scholar
  32. 30.
    A.C. Peet, PhD thesis, University of Cambridge (1987)Google Scholar
  33. 31.
    S. Hair, A. Beswick and K. Janda, J.Chem.Phys. 89: 3 970 (1988)Google Scholar
  34. 32.
    A.C. Peet, Chem.Phys.Lett. 132: 32 (1986)ADSCrossRefGoogle Scholar
  35. 33.
    S.A. Rice, I. McLaughlin and J. Jortner, J.Chem.Phys. 49: 2756 (1968)ADSCrossRefGoogle Scholar
  36. 34.
    M. Snels, R. Fantoni, R. Sanders and W.L. Meerts, Chem.Phys. 115: 79 (1987)ADSCrossRefGoogle Scholar
  37. 35.
    D.D. Nelson, Jr., G.T. Fraser and W. Klemperer, J.Chem.Phys. 83: 6201 (1985)ADSCrossRefGoogle Scholar
  38. 36.
    B. Heijmen, A. Bizzari, S. Stolte and J. Reuss, Chem.Phys. 126: 201 (1988)ADSCrossRefGoogle Scholar
  39. 37.
    B. Schmidt and U. Buck, unpublished resultsGoogle Scholar
  40. 38.
    D.J. Levandier, M. Mengel and G. Scoles, in: “The Chemical Physics of Atomic and Molecular Clusters”, Enrico Fermi School, Varenna, 1989Google Scholar
  41. 39.
    A.S. Al-Mubarak, G. Del Mistro, P.G. Lerthbridge, N.Y. Adul-Sattar and A.J. Stace, submitted for publicationGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Udo Buck
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations