Advertisement

Progress on the Determination of Intermolecular Potential Energy Surfaces From High Resolution Spectroscopy

  • David J. Nesbitt
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

The determination of accurate intermolecular potentials has been a key focus in the understanding of collision and half-collision dynamics, but has been exceedingly difficult to obtain in quantitative detail for even the simplest molecular systems. Traditional methods of obtaining empirical intermolecular potential information have been from analysis of nonideal gas behavior, second virial coefficients, viscosity data and other transport phenomena.1–3 However, these data sample highly averaged collisional interactions over relative orientations, velocities, impact parameters, initial and final state energies, etc. As a result intermolecular potential information from such methods is limited to estimates of the molecular size and stickiness, i.e., essentially the depth and position of the energy minimum for an isotropic well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Schramm and V. Leuchs, Ber Bunsenges. Phys. Chem. 83, 847 (1979).Google Scholar
  2. 2.
    G. J. Q. Van der Peyl, D. Frenkel, and J. Van der Elsken, Chem. Phys. lett. 56, 602 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    J. G. Kercy, G. J. Q. Van der Peyl, J. Van der Elsken, and D. Frenkel, J. Chem. Phys. 69, 4606 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    L. Beneventi, P. Cassavecchia, F. Vecchiocattiori, G. G. Volpi, U. Buck, Ch. Lauenstein, and R. Schinke, J. Chem. Phys. 89, 4671 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    C. V. Boughton, R. E. MIller, P. F. Vohralik, and R. O. Watts, Mol. Phys. 58, 827 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    W. D. Held, E. Piper, G. Ringer, and J. P. Toennies, Chem. Phys. Lett. 75, 260 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    G. Niedner, M. Noll, J. P. Toennies, and Ch. Schlier, J. Chem. Phys. 87, 2685 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    C. M. Lovejoy and D. J. Nesbitt, Rev. Sci. Instrum. 58, 807 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Pine, J. Opt. Soc. Am. 64, 1683 (1974).CrossRefGoogle Scholar
  10. 10.
    C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 86, 3151 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    A. Mcllroy and D. J. Nesbitt, J. Chem. Phys. 91, 104 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    M. S. Child and D. J. Nesbitt, Chem. Phys. Lett. 149, 404 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    D. J. Nesbitt, M. S. Child, and D. C. Clary, J. Chem. Phys. 90, 4855 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Hutson and B. J. Howard, Mol. Phys. 45, 791 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 91, 2790 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    D. C. Clary and D. J. Nesbitt, J. Chem. Phys. 90, 7000 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    R. C. Cohen, K. L. Busarow, K. B. Laughlin, G. A. Blake, M. Haventh, Y. T. Lee, and R. J. Saykally, J. Chem. Phys. 89, 4494 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    R. C. Cohen, K. L. Busarow, T. Y. Lee, and R. J. Saykally, J. Chem. Phys. (in press).Google Scholar
  19. 19.
    J. M. Hutson, J. Chem. Phys. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David J. Nesbitt
    • 1
  1. 1.Joint Institute for Laboratory Astrophysics, National Institute of Standards and Technology and Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations