Advertisement

Spectroscopy and Classical Simulations of Rigid and Fluxional Van der Waals Clusters

  • Samuel Leutwyler
  • Thomas Troxler
  • Jürg Bösiger
  • Richard Knochenmuss
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

In isolated molecules, an increase of internal energy normally leads to unimolecular rearrangement from the stable ground-state structure to other shapes and connectivities (conformers, enantiomers, isomers). Well-studied examples of compounds undergoing thermal isomerisations are, e.g., (methyl)cycloheptatriene, cyclopropane, and methyl isocyanide [1-3]. These thermal rearrangements involve the making and breaking of chemical bonds. In bulk molecular solids, the increase of thermal energy can lead to formation of new ordered or disordered phases and eventually to melting. The relative forces and motions are intermolecular in nature. However, there is a close connection between molecular isomerization and bulk phase transitions which becomes obvious in the case of neat or doped clusters: a range of phenomena occur which are isomerization processes sensu stricto, but bear a close resemblance to bulk phase transitions, due to the collective and diffusive nature of the transitions [5–16].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.H.Luu, K.G15nzer and J.Troe, Ber.Bunsenges.Phys.Chem. 79, 855 (1975);Google Scholar
  2. [1a]
    H.Hippler, K.Luther, and J.Troe, Farad.Soc. Disc. 67, 173 (1979).CrossRefGoogle Scholar
  3. [2]
    W.Forst, Theory of Unimolecular Reactions, ( Academic Press, New York, 1973 ).Google Scholar
  4. [3]
    H.O.Pritchard, The Quantum Theory of Unimolecular Reactions, ( Cambridge University Press, Cambridge, 1984 ).CrossRefGoogle Scholar
  5. [4]
    H.Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena, (Oxford University Press, Oxford, 1971 ).Google Scholar
  6. [5]
    G.Natanson, F.Amar, and R.S.Berry, J.Chem.Phys 78, 399 (1983);Google Scholar
  7. a] R.S. Berry, J. Jellinek, and G. Natanson, Phys. Rev. A 30, 919 (1984);ADSCrossRefGoogle Scholar
  8. [5b]
    Chem. Phys. Lett. 107, 227 (1984).Google Scholar
  9. [6]
    N. Quirke and P. Sheng, Chem. Phys. Lett. 110, 63 (1984).ADSCrossRefGoogle Scholar
  10. [7]
    J. Jellinek, T.L. Beck, and R.S. Berry, J. Chem. Phys. 84, 2783 (1986);Google Scholar
  11. a] F.Amar and R.S.Berry, J.Chem.Phys.85, 5774 (1986);Google Scholar
  12. b] T.L.Beck, J.Jellinek, and R.S.Berry, J.Chem.Phys. 87, 545 (1987);Google Scholar
  13. [7c]
    H.L.Davis, J.Jellinek, and R.S.Berry, J.Chem.Phys. 86, 6456 (1987).Google Scholar
  14. [8]
    J.D.Honeycutt and H.C.Andersen, J.Phys.Chem. 91, 4950 (1987).Google Scholar
  15. [9]
    S.Leutwyler and J.Bósiger, Zeitschr.Phys.Chemie NF, 154, 31 (1987).Google Scholar
  16. [10]
    J.B8siger and S.Leutwyler, Phys.Rev.Lett., 59, 1895 (1987).Google Scholar
  17. [11]
    J.B8siger and S.Leutwyler, in Large Finite Systems,eds. J.Jortner and B.Pullman (D.Reidel, Dordrecht 1987), pp.153164.Google Scholar
  18. [12]
    S.Leutwyler and J.B8siger, Faraday Discuss.Chem.Soc. 86, 225 (1988); Chem.Rev., in press.Google Scholar
  19. [13]
    J.Bósiger, R.Knochenmuss and S.Leutwyler, Phys.Rev.Lett., 62, 3058 (1989).Google Scholar
  20. [14]
    J. Bósiger and S. Leutwyler, submitted to J.Chem.Phys.Google Scholar
  21. [15]
    T.E.Gough, D.G.Knight, and G.Scoles, Chem.Phys.Lett. 97 155 (1983);Google Scholar
  22. [15a]
    T.E.Gough, M.Mengel, P.A.Rowntree, and G.Scoles, J.Chem. Phys. 83, 4958 (1985).Google Scholar
  23. [16]
    D. Eichenauer, and R.J.LeRoy, Phys.Rev.Lett. 57, 2920 (1986);Google Scholar
  24. [16a]
    R.J.LeRoy, J.C.Shelley, and D.Eichenauer, in Large Finite Systems, eds. J.Jortner and B.Pullman (D.Reidel, Dordrecht 1987), pp.165–172;Google Scholar
  25. [16b]
    D.Eichenauer and R.J.LeRoy, J.Chem.Phys. 88, 2898 (1988);Google Scholar
  26. [16c]
    J.C.Shelley, R.J.LeRoy, and F.G.Amar, Chem.Phys. Lett. 152, 14 (1988).Google Scholar
  27. [17]
    T.Troxler, R.Knochenmuss, and S.Leutwyler, Chem.Phys.Letters 159, 554 (1989), and references therein.Google Scholar
  28. [18]
    R.Knochenmuss and S.Leutwyler, submitted to J.Chem.Phys.Google Scholar
  29. [19]
    S.Leutwyler and J.B8siger, Chem.Rev., in press.Google Scholar
  30. [20]
    see M.Kappes and S.Leutwyler, chap.15 in Atomic and Molecular Beam Methods, edited by G.Scoles (Oxford University Press, 0xford,1988) pp.398–406.Google Scholar
  31. [21]
    A.Herrmann, S.Leutwyler, E.Schumacher, and L.WÓste, Chem.Phys.Lett. 52 (1977) 418;Google Scholar
  32. [21a]
    A.Herrmann, S.Leutwyler, E.Schumacher, and L.W8ste, Helv.Chim.Acta 61 (1978) 453.Google Scholar
  33. [22]
    D.L.Feldman, R.L.Lengel, and R.N.Zare, Chem.Phys.Lett. 52 (1977) 413.Google Scholar
  34. [23]
    S.Leutwyler, A.Herrmann, L.W8ste and E.Schumacher, Chem.Phys. 48 (1980) 253;Google Scholar
  35. [23a]
    S.Leutwyler, M.Hofmann, H.-P.H8rri and E.Schumacher, Chem.Phys.Lett. 77 (1981) 257.Google Scholar
  36. [24]
    J.Hopkins, D.Powers, and R.Smalley, J.Phys.Chem. 85 (1981) 3739.Google Scholar
  37. [25]
    K.H.Fung, W.E.Henke, T.R.Hays, H.L.Selzle, and E.W.Schlag, J.Phys.Chem. 85 (1981) 3560.Google Scholar
  38. [26]
    S.Leutwyler, U.Even, and J.Jortner, Chem.Phys.Lett. 86 (1982) 439;Google Scholar
  39. [26a]
    S.Leutwyler, U.Even, and J.Jortner, J.Chem.Phys. 79 (1983) 5769.Google Scholar
  40. [27]
    J.Geraedts, S.Setiadi, S.Stolte and J.Reuss, Chem.Phys.Lett. 78 (1981) 277;Google Scholar
  41. [27a]
    J.Geraedts, S.Stolte, and J.Reuss, Z.Phys.A 304 (1982) 167.Google Scholar
  42. [28]
    U.Buck and H.Meyer, Phys.Rev.Lett. 52 (1984) 109;Google Scholar
  43. [28a]
    U.Buck and H.Meyer Surf.Sci. 156 (1985) 275;Google Scholar
  44. [28b]
    U.Buck and H.Meyer, J.Chem.Phys. 84 (1986) 4854.ADSCrossRefGoogle Scholar
  45. [29]
    C.A.Haynam, D.V.Brumbaugh, and D.H.Levy,J.Chem.Phys 79 1581, (1983);Google Scholar
  46. [29a]
    L.Young, C.A.Haynam, and D.H.Levy, ibid. 79, 1592 (1983)Google Scholar
  47. [30]
    E.Carrasquillo, T.S.Zwier and D.H.Levy, J.Chem.Phys. 83, 4990 (1985).Google Scholar
  48. [31]
    R.E.Miller, Science, 240, 447 (1988);Google Scholar
  49. [32]
    Cheshnovsky and S.Leutwyler, J.Chem.Phys. 88 (1988) 4127.Google Scholar
  50. [33]
    R.Knochenmuss, 0.Cheshnovsky and S.Leutwyler, Chem. Phys.Lett. 144 (1988) 317.Google Scholar
  51. [34]
    see contributions by W.Klemperer and D.Nesbitt in this volume.Google Scholar
  52. [35]
    M.J. Ondrechen, Z. Berkovich-Yellin, and J. Jortner, J. Am.Chem. Soc. 103, 6586 (1981).Google Scholar
  53. [36]
    U. Even, A. Amirav, S. Leutwyler, M.J. Ondrechen, Z. Berkovich-Yellin and J. Jortner, Far. Disc. Chem. Soc. 73, 155 (1982).Google Scholar
  54. [37]
    S. Leutwyler, J. Chem. Phys. 81, 5480 (1984).ADSCrossRefGoogle Scholar
  55. [38]
    M.M. Doxtader, I.M. Gulfs, S.A. Schwartz, and M.R. Topp, Chem. Phys. Lett. 112, 483 (1984).ADSCrossRefGoogle Scholar
  56. [39]
    P.D. Dao, S. Morgan, and A.W. Castleman, Jr., Chem. Phys. Lett. 111, 38 (1984).ADSCrossRefGoogle Scholar
  57. [40]
    S. Leutwyler and J. Jortner, J.Phys.Chem. 91, 5558 (1987).CrossRefGoogle Scholar
  58. [41]
    F.H.Stillinger and T.A.Weber, Science 225, 983 (1984);ADSCrossRefGoogle Scholar
  59. a] R.A.LaViolette and F.H.Stillinger, J.Chem.Phys. 83, 4079 (1985);Google Scholar
  60. b] F.H.Stillinger and T.A.Weber, ibid.83, 4769 (1985).Google Scholar
  61. [42]
    T.Troxler and S.Leutwyler, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Samuel Leutwyler
    • 1
  • Thomas Troxler
    • 1
  • Jürg Bösiger
    • 1
  • Richard Knochenmuss
    • 1
  1. 1.Institut für Anorganische, Analytische und Physikalische ChemieUniversität BernBern 9Switzerland

Personalised recommendations