Vibration Dynamics in Solute/Solvent Clusters: Aniline (Ar)1 and Aniline (CH4)1

  • E. R. Bernstein
Part of the NATO ASI Series book series (NSSB, volume 227)


The first excited electronic state (S1) vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 Van der Waals (vdW) clusters have been studied using molecular jet and time resolved emission spectroscopic techniques. The rates of intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) as a function of excess vibrational energy are reported for both clusters. For vibrational energy in excess of the cluster binding energy, both clusters are observed to dissociate. The dispersed emission spectra of these clusters demonstrate that aniline(Ar)1 dissociates to all energetically accessible bare molecule states and that aniline(CH4)1 dissociates selectively to only the bare molecule vibrationless state. The emission kinetics show that in the aniline(Ar)1 case, the initially excited states have nanosecond lifetimes, and intermediate cluster states have very short lifetimes. In contrast, the initially excited aniline(CH4)1 states and other vibrationally excited cluster states are very short lived (<100 ps), and the intermediate cluster 00 state i s observed. These results can be understood semiquantitatively in terms of an overall serial IVR/VP mechanism which consists of the following elements: 1. the rates of chromophore to vdW mode IVR are given by Fermi’s golden rule, and the density of vdW vibrational states is the most important factor in determining the relative [aniline(Ar)1 vs. aniline(CH4)1] rates of IVR; 2. IVR among the vdW modes is rapid; and 3. VP rates can be calculated by a restricted vdW mode phase space RRKM theory. Since the density of vdW states is three orders of magnitude greater for aniline(CH4)1 thananiline(Ar)1 at 700 cm-1 of excess energy in S1, the model predicts that IVR is slow and rate limiting in aniline(Ar)1, whereas VP is slow and rate limiting in aniline(CH4)1. The agreement of these predictions with the experimental results is very good and i s discussed in detail.


Vibrational Energy Vibronic State Vibrational Dynamic Intramolecular Vibrational Energy Redistribution Emission Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. l.a.
    P. Avouris, W. M. Gelbart and M. A. El-Sayed, Chem Rev. 77, 793 (1977).CrossRefGoogle Scholar
  2. b.
    S. Mukamel, J. Phys. Chem. 88, 1077 (1985).Google Scholar
  3. c.
    S. Mukamel and J. Jortner, Excited States, Ed. E. C. Lim, (Academic Press, 1977 ), Vol. III, p. 57.Google Scholar
  4. 2.a.
    D. J. Robinson and K. A. Holbrook, Unimolecular Reactions, (Wiley, 1972 ).Google Scholar
  5. b.
    D. F. Kelley and E. R. Bernstein, J. Phys. Chem. 90 5164 (1986).Google Scholar
  6. c.
    J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, (Prentice Hall, 1989 ).Google Scholar
  7. d.
    R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, (Oxford, 1987 ).Google Scholar
  8. e.
    D. M. Wardlaw and R. A. Marcus, Chem. Phys. Lett. 110, 230 (1984), Adv. Chem. Phys. 70, 231 (1987).Google Scholar
  9. 3.a.
    J. A. Beswick and J. Jortner, Adv. Chem. Phys. 47(pt.1), 363 (1981) and references therein.Google Scholar
  10. b.
    S. H. Lin, Radiationless Transitions, ( Academic, 1980 ).Google Scholar
  11. 4.a.
    D. V. Brumbaugh, J. E. Kenny and D. H. Levy, J. Chem. Phys. 78, 3415 (1983) and references therein.Google Scholar
  12. b.
    C. A. Haynam, D. V. Brumbaugh and D. H. Levy, J. Chem. Phys. 80, 2256 (1984).Google Scholar
  13. c.
    Y. D. Park and D. H. Levy, J. Chem. Phys. 1, 5527 (1984).ADSCrossRefGoogle Scholar
  14. 5.
    C. A. Haynam, L. Young, C. Morter and D. H. Levy, J. Chem. Phys. 21, 5216 (1984).ADSCrossRefGoogle Scholar
  15. 6.
    N. Mikami, Y. Scigobora and M. Ito, J. Phys. Chem. 21, 2080 (1986) and H. Abe, Y. Okyanagi, M. Iokijo, N. Mikami, and M. Ito J. Phys. Chem. 80, 3512 (1985).Google Scholar
  16. 7.
    N. Halberstadt and B. Soep, Chem. Phys. Lett., 109 (1982) and J. Chem. Phys. 80, 2340 (1984).Google Scholar
  17. 8.a
    T. A. Stephensen, P. L. Radloff and S. A. Rice, J. Chem. Phys. 81 1060 (1984).Google Scholar
  18. b.
    T. A. Stephensen and S. A. Rice, J. Chem. Phys. 81, 1083 (1984).ADSCrossRefGoogle Scholar
  19. c.
    P. M. Weber and S. A. Rice, J. Phys. Chem. 92 5470 (1988) and J. Chem. Phys. 88, 1082, 6107, 6120 (1988).Google Scholar
  20. d.
    B. A. Jacobsen, S. Humphrey and S. A. Rice, J. Chem. Phys. 89, 5624 (1988).ADSCrossRefGoogle Scholar
  21. 9.a.
    C. S. Parmenter, J. Phys. Chem. 86 1735 (1982).Google Scholar
  22. b.
    K. W. Butz, D. L. Catlett, G. E. Ewing, D. Krajnovich and C. S. Parmenter, J. Chem. Phys. 99, 3533 (1986).Google Scholar
  23. c.
    H. K. O, C. S. Parmenter, and M. C. Su, Ber. Bunsenges Phys. Chem. 92, 253 (1988).Google Scholar
  24. 10.a.
    J. J. F. Ramackers, J. Langelaar and R. P. H. Rettschnick, Picosecond Phenomena III, Ed. K. Eisenthal, R. M. Hochstrasser, W. Kaiser and A. Laubereau (Springer, 1982 ), p. 264.Google Scholar
  25. b.
    M. Heppener, A. G. M. Kunst, D. Bebelaar and R. P. H. Rettschnick, J. Chem. Phys. 83 5314 (1985).Google Scholar
  26. c.
    M. Heppener, R. P. H. Rettschnick, Structure and Dynamics of Weakly Bound Molecular Complexes, Ed. A. Weber, ( Reidel, 1987 ) p. 553.Google Scholar
  27. d.
    J. J. F. Ramackers, L. B. Krijnen, H. J. Lips, J. Langelaar, R. P. H. Rettschnick, Laser Chem. 2, 125 (1983).CrossRefGoogle Scholar
  28. e.
    J. J. F. Ramackers, H. K. van Dijk, J. Langelaar, R. P. H. Rettschnick, Faraday Disc. Chem. Soc. 75, 183 (1983).Google Scholar
  29. 11.a.
    E. R. Bernstein, K. Law and M. Schauer, J. Chem. Phys. 80, 107, 634 (1984).ADSCrossRefGoogle Scholar
  30. b.
    M. Schauer, K. Law and E. R. Bernstein, J. Chem. Phys. 81, 49 (1984).ADSCrossRefGoogle Scholar
  31. c.
    M. Schauer, K. Law and E. R. Bernstein, J. Chem. Phys., 82, 726, 736 (1985).ADSCrossRefGoogle Scholar
  32. 12.
    D. D. Smith, A. Lorincz, J. Siemion and S. A. Rice, J. Chem. Phys. 81, 2295 (1984).ADSCrossRefGoogle Scholar
  33. 13.
    J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 82., 4715 (1985).Google Scholar
  34. 14.
    M. R. Nimlos, M. A. Young, E. R. Bernstein and D. F. Kelley, J. Chem. Phys. to be published.Google Scholar
  35. 15.
    D. A. Chernoff and S. A. Rice, J. Chem. Phys. 70, 2521 (1979) and references therein.Google Scholar
  36. 16.
    G. E. Ewing, J. Phys. Chem. 91, 4662 (1987).CrossRefGoogle Scholar
  37. 17.
    V. E. Bondybey and L. E. Brus, Adv. Chem. Phys. 41, 269 (1980).CrossRefGoogle Scholar
  38. 18.
    S. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. R. Bernstein
    • 1
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations