Advertisement

Current Problems and Future Prospects for Polyatomic Van der Waals Molecules and Small Clusters: Theory

  • George E. Ewing
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

The beginnings of the theory of dynamics of Van der Waals molecules and small clusters go back many decades. Over forty years ago, Stepanovl made the suggestion that short vibrational predissociation lifetimes might account for the diffuse bands commonly observed in the infrared spectra of hydrogen bonding systems. In 1974 an estimate of this lifetime was provided by Klemperer2 who scaled the gas phase vibrational relaxation rate constant for HF + HF* collisions by the frequency of vibration against the hydrogen bond in the complex HF...HF*. Over the next several years three independent derivations of an identical analytical expression that provided vibrational predissociation lifetimes of Van der Waals molecules were published by Coulson and Robertson3, Beswick and Jortner4 and Ewing5. Within this same period, Child and Ashton6 performed the first numerical calculation of vibrational predissociation based on a realistic anisotropic intermolecular potential. The decade that has followed the development of these early theoretical approaches has seen a proliferation of models and calculations in response to the excellent experimental measurements that continue to call for explanation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Stepanov, Nature (London) 157: 800 (1946).ADSCrossRefGoogle Scholar
  2. 2.
    W. Klemperer, Ber, Bunsenges. Phys. Chem. 78: 128 (1974).Google Scholar
  3. 3.
    C. A. Coulson and G. N. Robertson, Proc. R. Soc. London A342: 289 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Beswick and J. Jortner, Chem. Phys. Lett. 49: 13 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    G. E. Ewing, Chem. Phys. 29: 253 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    M. S. Child and C. J. Ashton, Faraday Disc. Chem. Soc. 62: 307 (1976)Google Scholar
  7. 7.
    R. E. Smalley, D. H. Levy, and L. Wharton, J. Chem. Phys. 64: 3266 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    D. H. Levy, Adv. Chem. Phys. 47: 323 (1981).Google Scholar
  9. 9.
    J. A. Beswick and J. Jortner, Adv. Chem. Phys. 43 (Part 1): 263 (1981).Google Scholar
  10. 10.
    T. E. Gough, R. E. Miller and G. Scoles, Appl. Phys. Lett. 30: 338 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Pine and W. J. Lafferty, J. Chem, Phys. 78: 2154 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    G. E. Ewing, J. Chem. Phys. 72: 2096 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    G. E. Ewing, J. Phys. Chem. 91: 4662 (1987).CrossRefGoogle Scholar
  14. 14.
    C. B. Moore, J. Chem. Phys. 43: 2979 (1965)ADSCrossRefGoogle Scholar
  15. 15.
    J. I. Cline, D. D. Evard, B. P. Reid, N. Sivakumar, F. Thommen, K. C. Janda, “Structure and Dynamics of Weakly Bound Molecular Complexes”, A. Weber ed., Reidel, Dordrecht (1987).Google Scholar
  16. 16.
    C. A. Long, G. Henderson, G. E. Ewing, Chem. Phys. 2: 485 (1973)ADSCrossRefGoogle Scholar
  17. A.R.W. McKellar, J. Chem. Phys. 88: 4190 (1988).ADSCrossRefGoogle Scholar
  18. 17.
    D. W. Chandler, and G. E. Ewing, J. Chem. Phys. 73: 4904 (1980).ADSCrossRefGoogle Scholar
  19. 18.
    G. Herzberg, “Spectra of Diatomic Molecules”, Van Nostrand, Princeton, 1950.Google Scholar
  20. 19.
    J. M. Hutson, J. Chem. Phys., 81: 2357 (1984); 81: 6413 (1984).Google Scholar
  21. 20.
    M. P. Casassa, D. S. Bomse, and K. C. Janda, J. Chem. Phys., 74: 5044 (1981)ADSCrossRefGoogle Scholar
  22. 21.
    J. M. Hutson, D. C. Clary, and J. A. Beswick, J. Chem. Phys., 81: 7747 (1984).Google Scholar
  23. 22.
    Z. S. Huang, K. W. Jucks and R. E. Miller, J. Chem. Phys. 85: 3338 (1986).ADSCrossRefGoogle Scholar
  24. 23.
    N. Halberstadt, Ph. Brechignac, J. A. Beswick, and M. Shapiro, J. Chem. Phys. 84: 170 (1986).ADSCrossRefGoogle Scholar
  25. 24.
    D. C. Dayton, K. W. Jucks and R. E. Miller, J. Chem. Phys. 90: 2631 (1989).ADSCrossRefGoogle Scholar
  26. 25.
    M. T. Berry, M. R. Brustein and M. Lester J. Chem. Phys. 90: 5878 (1989) and these proceedings.ADSCrossRefGoogle Scholar
  27. 26.
    K. W. Butz, D. L. Catlett, Jr., G. E. Ewing, D. J. Krajnovich and C. S. Parmenter, J. Phys. Chem. 90: 3533 (1986).CrossRefGoogle Scholar
  28. 27.
    G. E. Ewing, J. Phys. Chem. 90: 1790 (1986).CrossRefGoogle Scholar
  29. 28.
    A. R. Tiller, A. C. Peet and D. C. Clary, Chem. Phys. 129: 125 (1989).ADSCrossRefGoogle Scholar
  30. 29.
    J. J. F. Ramaekers, H. K. Dijk, J. Langelaar, and R. P. H. Rettschnick, Faraday Discuss. Chem. Soc. 75: 183 (1983).Google Scholar
  31. 30.
    D. V. Brumbaugh, J. E. Kenny and D. H. Levy, J. Chem. Phys. 78: 3415 (1983).ADSCrossRefGoogle Scholar
  32. 31.
    D. F. Kelley and E. R. Bernstein, J. Chem. Phys. 90: 5164 (1986).CrossRefGoogle Scholar
  33. 32.
    H. H. Richardson, H. -C. Chang, C. Noda and G. E. Ewing, Surf. Sci 216: 43 (1989).ADSCrossRefGoogle Scholar
  34. 33.
    H. H. Richardson, C. Baumann and G. E. Ewing, Surf. Sci. 185: 15 (1987).ADSCrossRefGoogle Scholar
  35. 34.
    H. -C. Chang and G. E. Ewing, Chem. Phys. (in press).Google Scholar
  36. 35.
    D. Lucas and G. E. Ewing, Chem. Phys. 58: 385 (1981).ADSCrossRefGoogle Scholar
  37. 36.
    Z. W. Gortel, H. J. Kreuzer, P. Piercy and R. Teshima, Phys. Rev. B27: 5066 (1983).ADSCrossRefGoogle Scholar
  38. 37.
    A. Ben Ephram, M. Folman, J. Heidberg and N. Moiseyer, J. Chem. Phys. 89: 3840 (1988).ADSCrossRefGoogle Scholar
  39. 38.
    J. T. Muckerman and T. Uzer, J. Chem. Phys. 90: 1968 (1989).ADSCrossRefGoogle Scholar
  40. 39.
    A. Nitzan and J. C. Tully, J. Chem. Phys. 78: 3959 (1983).ADSCrossRefGoogle Scholar
  41. 40.
    I. Benjamin and W. P. Reinhardt, J. Chem. Phys. 90: 7535 (1989).ADSCrossRefGoogle Scholar
  42. 41.
    E. J. Hielweil, M. P. Casassa, R. R. Cavanagh and J. C. Stephenson, J. Chem. Phys. 81: 2856 (1984).ADSCrossRefGoogle Scholar
  43. 42.
    R. Disslekamp and G. Ewing, Disc. of the Faraday Soc. (1989) (in press).Google Scholar
  44. 43.
    G. Torchet, H. Bouchier, J. Farges, M. F. de Feraudy and B. Raoult, J. Chem. Phys. 81: 2137 (1984).ADSCrossRefGoogle Scholar
  45. 44.
    J. A. Barnes and T. E. Gough, J. Chem. Phys. 86: 6012 (1987).ADSCrossRefGoogle Scholar
  46. 45.
    De T. Sheng and G. E. Ewing, J. Phys. Chem. 92: 4063 (1988).CrossRefGoogle Scholar
  47. 46.
    R. E. Miller, Science 240: 447 (1988).ADSCrossRefGoogle Scholar
  48. 47.
    K. W. Jucks, Z. S. Huang, R. E. Miller, G. T. Fraser, A. S. Pine and W. J. Lafferty, J. Chem. Phys. 88: 2185 (1988).ADSCrossRefGoogle Scholar
  49. 48.
    G. T. Fraser, A. S. Pine, W. J. Lafferty and R. E. Miller, J. Chem. Phys. 87: 1502 (1987).ADSCrossRefGoogle Scholar
  50. 49.
    O Berg and G. E. Ewing, Surf. Sci. (in press).Google Scholar
  51. 50.
    J. D. Van der Waals, Dissertation, Leiden, The Netherlands, (1973).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • George E. Ewing
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations