Advertisement

IVR in a Polyatomic Van der Waals Complex

  • André G. M. Kunst
  • Rudolf P. H. Rettschnick
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

We have studied the vibrational energy flow in photoexcited Van der Waals complexes T·Ar of s-tetrazine and argon. The aim of this paper is to present experimental information about the coupling among the Van der Waals vibrational modes in T·Ar and about the interaction between ring modes and vdW vibrations.

Time-resolved laser-induced fluorescence experiments have demonstrated that the photodissociation of T·Ar is preceded by intramolecular vibrational redistribution (IVR) processes in which the pumped level Ci develops into levels Cj of the complex which are not accessible by optical excitation because they include highly excited Van der Waals vibrations. The isoenergetic levels Ci and Cj of the cluster are characterized by different vibronic states of the tetrazine moiety.

The intensity patterns of the vibrational substructure of the fluorescence spectra indicate that the Van der Waals stretch and bend modes are extensively mixed. High resolution experiments performed with a single frequency laser show that the mixing of the pumped level Ci (in the present study 6a1) with near-resonant levels C (in this case 16a2) depends on the rotational state of the complex. The quantum yields of IVR and photodissociation depend on which rotational states of the cluster are initially excited. Almost all the selectivity with respect to the rotational degrees of freedom is in the first step (IVR) and not in the last step (fragmentation).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.V. Brumbaugh, J.E. Kenny and D.H. Levy, J. Chem. Phys. 78, 3415 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    J. J. F. Ramaekers, H.K. van Dijk, J. Langelaar and R.P.H. Rettschnick, Faraday Discuss. Chem. Soc. 75, 183 (1983)Google Scholar
  3. 3.
    J. J. F. Ramaekers, L.B. Krijnen, H.J. Lips, J. Langelaar and R.P.H. Rettschnick, Laser Chem. 2, 125 (1983)CrossRefGoogle Scholar
  4. 4.
    M. Heppener, A.G.M. Kunst, D. Bebelaar and R.P.H. Rettschnick, J. Chem. Phys. 83, 5341 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    M. Heppener and R.P.H. Rettschnick, in “Structure and Dynamics of Weakly Bound Complexes”, A. Weber (ed.) Reidel, Dordrecht (1987), 553.CrossRefGoogle Scholar
  6. 6.
    P.M. Weber and S.A. Rice, J. Chem. Phys. 88, 6120 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    P.M. Weber and S.A. Rice, J. Phys. Chem. 92, 5470 (1988)CrossRefGoogle Scholar
  8. 8.
    D.F. Kelley and E.R. Bernstein, J. Phys. Chem. 90, 5164 (1986)CrossRefGoogle Scholar
  9. 9.
    G.E. Ewing, J. Phys. Chem. 90, 1790 (1986)CrossRefGoogle Scholar
  10. 10.
    C.A. Haynam, D.V. Brumbaugh and D.H. Levy, J. Chem. Phys. 80, 2256 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    P M. Weber, J.T. Buontempo, F. Novak and S.A. Rice, J. Chem. Phys. 88, 6082 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Menapace and E.R. Bernstein, J. Phys. Chem. 91, 2533 (1987)CrossRefGoogle Scholar
  13. 13.
    G. Brocks and T. Huygen, J. Chem. Phys. 85, 3411 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    J R. Henderson, M. Muramoto and R.A. Willett, J. Chem. Phys. 41, 580 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    E.J. Bieske, M.W. Rainbird, I.M. Atkinson and A.E.W. Knight, J. Chem. Phys. 91, 752 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    N. Halberstadt, J.A. Beswick and K.C. Janda, J. Chem. Phys. 87, 3966 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • André G. M. Kunst
    • 1
  • Rudolf P. H. Rettschnick
    • 1
  1. 1.Laboratory for Physical ChemistryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations