Advertisement

Van der Waals Molecules as a Vehicle for the Study of Unimolecular Reactions

  • Stuart A. Rice
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

The general aspects of the dynamics of thermal unimolecular reactions were elucidated in the 1920’ by the introduction of three key ideas. First, the Lindemann hypothesis1 provided an explanation, using the phenomenological formulation of reaction kinetics, of how collisional excitation of the molecules can be consistent with first order reaction kinetics in the high pressure regime while being, of course, second order in the pressure in the low pressure regime. Although qualitatively satisfactory, the application of the Lindemann hypothesis in its simplest form predicts that the transition in the reaction kinetics as a function of pressure from first order to second order occurs at a much higher presure than is observed.2 Second, the Hinshelwood theory3 introduced the notion that the rate constant for the energization process can be much greater for a complex molecule than for a simple molecule because the energy of a complex molecule can be distributed over a larger number of degrees of freedom. The Hinshelwood analysis removes the above mentioned problem with respect to the pressure dependence of the unimolecular reaction rate. Third, the Rice-Kassel-Ramsberger (RKR) theory4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.A. Lindemann, Trans. Faraday Soc. 17, 598 (1922).CrossRefGoogle Scholar
  2. 2.
    See, for example, K.J. Laidler, Chemical Kinetics, McGraw Hill, New York (1965).Google Scholar
  3. 3.
    C.N. Hinshelwood, Proc. Roy. Soc. (London) A113, 230 (1927).ADSCrossRefGoogle Scholar
  4. 4.
    L.S. Kassel, J. Phys. Chem. 32, 225 (1928);CrossRefGoogle Scholar
  5. 5.
    O.K. Rice and H.C. Ramsberger, J. Am. Chem. Soc. 49, 1617 (1927); 50, 617 (1928).Google Scholar
  6. 6.
    See, for example, W. Forst, Theory of Unimolecular Reactions, Academic Press, New York (1973).Google Scholar
  7. 7.
    There are so many reports of measurements of vibrational energy redistribution in, and vibrational predissociation of, vdW molecules that only one review will be cited here; other relevant papers are cited in references 16–23. F.G. Celli and K.C. Janda, Chem. Revs. 86, 507 (1986).Google Scholar
  8. 8.
    We cite only a few examples from the extensive literature: a. J.A. Beswick and J. Jortner, J. Chem. Phys. 74 6725 (1981).Google Scholar
  9. b. E. Segev and M. Shapiro, J. Chem. Phys. 78, 4969 (1983).ADSCrossRefGoogle Scholar
  10. c. G. Dalgado-Barrio, P. Mareca, P. Villarreal, A.M. Cortina and S. Miret-Artes, J. Chem. Phys. 84, 4268 (1986).ADSCrossRefGoogle Scholar
  11. d. J.M. Hutson, C.J. Ashton and R.J. LeRoy, J. Phys. Chem. 87, 2713 (1983).CrossRefGoogle Scholar
  12. e. J.M. Hutson, J. Chem. Phys. 81, 2357 (1984).ADSCrossRefGoogle Scholar
  13. f. I.F. Kidd and G.G. Balint-Kurti, J. Chem. Phys. 82, 93 (1985).ADSCrossRefGoogle Scholar
  14. g. A.C. Peet, D.C. Clary and J.M. Hutson, Faraday Disc. Chem. Soc.82, 327 (1986).Google Scholar
  15. h. G.E. Ewing, J. Phys. Chem. 91, 4662 (1987).CrossRefGoogle Scholar
  16. i. G.E. Ewing, J. Chem. Phys. 90, 1790 (1986).CrossRefGoogle Scholar
  17. j. A.R. Tiller, A.C. Peet and D.C. Clary, Chem. Phys. 129, 125 (1989).ADSCrossRefGoogle Scholar
  18. 8.
    K.E. Johnson, L. Wharton and D.H. Levy, J. Chem. Phys. 69, 2719 (1978).ADSCrossRefGoogle Scholar
  19. 9.
    K.E. Kenny, K.E. Johnson, W. Sharfin and D.H. Levy, J. Chem. Phys. 72, 1109 (1980).ADSCrossRefGoogle Scholar
  20. 10.
    K.E. Kenny, T.D. Russell and D.H. Levy, J. Chem. Phys. 73, 3607 (1980).ADSCrossRefGoogle Scholar
  21. 11.
    K.E. Johnson, W. Sharfin and D.H. Levy, J. Chem. Phys. 74, 163 (1981).ADSCrossRefGoogle Scholar
  22. 12.
    D.H. Levy, private communication.Google Scholar
  23. 13.
    J.A. Beswick and G. Delgado-Barrio, J. Chem. Phys. 73, 3653 (1980).ADSCrossRefGoogle Scholar
  24. 14.
    R.L. Waterland, J.M. Skene and M.I. Lester, J. Chem. Phys. 89, 7277 (1988).ADSCrossRefGoogle Scholar
  25. 15.
    J.C. Drabits and M.I. Lester, J. Chem. Phys. 89, 4716 (1988).ADSCrossRefGoogle Scholar
  26. 16.
    a. D.V. Brumbaugh, J.E. Kenney and D.H. Levy, J. Chem. Phys. 78, 3415 (1983);ADSCrossRefGoogle Scholar
  27. b. J.J.F. Ramaekers, H.K. van Dijk, J. Langerlaar and R.P.H. Rettschnick, Faraday Disc. Chem. Soc. 75, 183 (1983).Google Scholar
  28. c. M. Heppener and R.P.H. Rettschnick, in Structure and Dynamics of Weakly Bound Molecular Complexes, ed. A. Weber, Reidel, Dordrecht (1987);CrossRefGoogle Scholar
  29. d. P.M. Weber and S.A. Rice, J. Chem. Phys. 88, 6107 (1988);ADSCrossRefGoogle Scholar
  30. e. P.M. Weber and S.A. Rice, J. Chem. Phys. 88, 6120 (1988).ADSCrossRefGoogle Scholar
  31. f. P.M. Weber, J.T. Buontempo, F. Novak and S.A. Rice, J.Chem. Phys. 88, 6082 (1988).ADSCrossRefGoogle Scholar
  32. 17.
    N. Halberstadt and B. Soep, J. Chem. Phys. 80, 2340 (1984)ADSCrossRefGoogle Scholar
  33. N. Halberstadt and B. Soep, Chem. Phys. Lett. 87, 109 (1982).ADSCrossRefGoogle Scholar
  34. 18.
    T.A. Stephenson and S.A. Rice, J. Chem. Phys. 81, 1083 (1984).ADSCrossRefGoogle Scholar
  35. 19.
    R. Rosman and S.A. Rice, J. Chem. Phys. 86, 3292 (1987).ADSCrossRefGoogle Scholar
  36. 20.
    E.R. Bernstein, K. Law and M. Schauer, J. Chem. Phys. 80, 207 (1984).ADSCrossRefGoogle Scholar
  37. 21.
    K.W. Butz, D.L. Catlett, Jr., G.E. Ewing, D. Krajnovich and C.S. Parmenter, J. Phys. Chem. 90, 3533 (1986);CrossRefGoogle Scholar
  38. 22.
    B.A. Jacobson, S. Humphrey and S.A. Rice, J. Chem. Phys. 89, 5624 (1988).ADSCrossRefGoogle Scholar
  39. 23.
    H. Abe, Y. Ohyanagi, M. Ichijo, N. Mikami and M. Ito, J. Phys. Chem. 89 3512 (1985):CrossRefGoogle Scholar
  40. N. Mikami, Y. Sugahara and M. Ito, J. Phys. Chem. 90, 2080 (1986).CrossRefGoogle Scholar
  41. 24.
    See, for example, C.A. Haynam, D.V. Brumbaugh and D.H. Levy, J. Chem. Phys. 80, 2256 (1984).ADSGoogle Scholar
  42. 25.
    E.J. Bieske, M.W. Rainbird, I.M. I.M. Atkinson and A.E.W. Knight, J. Chem. Phys. 91, 752 (1989).ADSCrossRefGoogle Scholar
  43. 26.
    J. Boesiger and S. Leutwyler, Chem. Phys. Lett. 126, 238 (1986).ADSCrossRefGoogle Scholar
  44. 27.
    J.A. Menapace and E.R. Bernstein, J. Phys. Chem. 91, 2533 (1987).CrossRefGoogle Scholar
  45. 28.
    P.M. Weber and S.A. Rice, J. Phys. Chem. 92, 5470 (1988).CrossRefGoogle Scholar
  46. 29.
    C.J. Ballhausen and A.E. Hansen, Ann. Rev. Phys. Chem. 23, 15 (1972).ADSCrossRefGoogle Scholar
  47. 30.
    E.B. Wilson, Jr.,.C. Decius and P.C. Gross, Molermlar Vibrations, McGraw Hill, New York (1955).Google Scholar
  48. 31.
    B.A. Jacobson, Ph.D. dissertation, University of Chicago (1988).Google Scholar
  49. 32.
    G. Herzberg and E. Teller, Z. Phys. Chem. C. Leipzig) 21, 410 (1933)Google Scholar
  50. G. Orlandi and W. Siebrand, J. Chem. Phys. 58, 4513 (1973).ADSCrossRefGoogle Scholar
  51. 33.
    S.K. Gray, S.A. Rice and D.W. Noid, J. Chem. Phys. 84, 3745 (1986).ADSCrossRefGoogle Scholar
  52. 34.
    M.J. Davis and S.K. Gray, J. Chem. Phys. 84, 5389 (1986).ADSCrossRefGoogle Scholar
  53. 35.
    R.S. MacKay, J. Meiss and I.C. Percival, Physica D13, 55 (1984).MathSciNetGoogle Scholar
  54. 36.
    D. Bensimon and L. Kadanoff, Physica D13, 82 (1984).MathSciNetGoogle Scholar
  55. 37.
    S.R. Channon and J. Lebowitz, Ann. N.Y. Acad. Sci. 357, 108 (1980).ADSCrossRefGoogle Scholar
  56. 38.
    S.K. Gray, S.A. Rice and M.J. Davis, J. Phys. Chem. 90, 3470 (1986).CrossRefGoogle Scholar
  57. 39.
    S.K. Gray and S.A. Rice, Faraday Disc. Chem. Soc. 82, 307 (1986).Google Scholar
  58. 40.
    S.K. Gray and S.A. Rice, J.Chem. Phys. 86, 2020 (1987).ADSCrossRefGoogle Scholar
  59. 41.
    S.H. Tersigni and S.A. Rice, Ber. Bunsenges. Phys. Chem. 92, 227 (1988).CrossRefGoogle Scholar
  60. 42.
    S.H. Tersigni, P. Gaspard and S.A. Rice, work in progress.Google Scholar
  61. 43.
    A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion,. Springer, New York (1983).CrossRefGoogle Scholar
  62. 44.
    P. Gaspard and S.A. Rice, J. Phys. Chem., in press.Google Scholar
  63. 45.
    J.M. Greene, R.S. MacKay, F. Vivaldi and M.J. Feigenbaum, Physica D3, 468 (1981)MathSciNetGoogle Scholar
  64. S.J. Shenker and L.P. Kadanoff, J. Stat. Phys. 27, 631 (1982)ADSCrossRefGoogle Scholar
  65. R.S. MacKay, Physica D7, 283 (1983).MathSciNetGoogle Scholar
  66. 46.
    P. Gaspard and S.A. Rice, J. Chem. Phys. 90, 2225 (1989)ADSMathSciNetCrossRefGoogle Scholar
  67. P. Gaspard and S.A. Rice, J. Chem. Phys. 90, 2242 (1989)ADSMathSciNetCrossRefGoogle Scholar
  68. P. Gaspard and S.A. Rice, J. Chem. Phys. 90, 2255 (1989).ADSMathSciNetCrossRefGoogle Scholar
  69. 47.
    B. Eckhardt, J. Phys. A20, 5971 (1987).ADSMathSciNetGoogle Scholar
  70. 48.
    Y.G. Sinai, Russian Mathematical Surveys 27, 21 (1972)ADSCrossRefGoogle Scholar
  71. L.P. Kadanoff and C. Tang, Proc. Nat. Acad. Sci. U.S.A. 81, 1276 (1984).ADSCrossRefGoogle Scholar
  72. 49.
    For Neumann boundary conditions r = 1; in the case of scattering of electromagnetic waves from imperfect conducting cylinders, (ri 0000 1.Google Scholar
  73. 50.
    The plane wave dynamics also makes use of corrections with ß = 3/2, 5/2,….Google Scholar
  74. 51.
    D. Ruelle, J. Stat. Phys. 44, 281 (1986)ADSMathSciNetCrossRefGoogle Scholar
  75. D. Ruelle, Thermodynamic. Formalism Addison-Wesley, Reading, MA (1978).MATHGoogle Scholar
  76. 52.
    D. Bessis, G. Paladin, G. Turchetti and S. Vaienti, J. Stat. Phys. 51, 109 (1988).ADSCrossRefGoogle Scholar
  77. 53.
    H. Kantz and P. Grassberger, Physica D17, 75 (1985)MathSciNetGoogle Scholar
  78. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).ADSCrossRefGoogle Scholar
  79. 54.
    M.G. Gutzwiller, J. Math. Phys. 12, 343 (1971)ADSCrossRefGoogle Scholar
  80. M.C. Gutzwiller, J. Phys. Chem. 92, 3154 (1988).CrossRefGoogle Scholar
  81. 55.
    P. Cvitanovic and B. Eckhardt, Phys. Rev. Lett., in press.Google Scholar
  82. 56.
    P. Walters, An Introduction to Ergodic Theory, Springer, Berlin (1981).Google Scholar
  83. 57.
    U. Fano, Nuovo Cimento 12, 156 (1935)Google Scholar
  84. U. Fano, Phys. Rev. 124, 1866 (1961).ADSCrossRefGoogle Scholar
  85. 58.
    C.E. Porter (ed),,Statistical Theories of Spectral Fluctuations, Academic Press, New York (1965).Google Scholar
  86. 59.
    R. Kosloff and S.A. Rice, J. Chem. Phys. 74, 1340 (1981)ADSMathSciNetCrossRefGoogle Scholar
  87. S.A. Rice and R. Kosloff, J. Phys. Chem. 86, 2153 (1982)CrossRefGoogle Scholar
  88. J. Manz, preprint entitled “A simplified Proof of the Kosloff-Rice Theorem: Intramolecular Quantum Dynamics Cannot be Chaotic”.Google Scholar
  89. 60.
    D.J. Tannor and S.A. Rice, J. Chem. Phys. 83, 5013 (1985).ADSCrossRefGoogle Scholar
  90. 61.
    D.J. Tannor, R. Kosloff and S.A. Rice, J. Chem. Phys. 85, 5805 (1986)ADSCrossRefGoogle Scholar
  91. S.A. Rice, D.J. Tannor and R. Kosloff, J. Chem. Soc. Faraday Trans 2, 82, 2423 (1986).Google Scholar
  92. 62.
    A.M. Weiner, J.P. Heritage and E.M. Kirschner, J. Opt. Soc. Am. B5, 1563 (1988).ADSCrossRefGoogle Scholar
  93. 63.
    S.H. Tersigni, R. Koslorr, D.J. Tannor and S.A. Rice, manuscript in preparation.Google Scholar
  94. 64.
    R. Kosloff, S.A. Rice, P. Gaspard, S.H. Tersigni and D.J. Tannor, Chem. Phys., in press.Google Scholar
  95. 65.
    M. Schmidt, R. Carlson and S.A. Rice, unpublished work.Google Scholar
  96. 66.
    R. Carlson, M. Schmidt and S.A. Rice, work in progress.Google Scholar
  97. 67.
    K. Yamanouchi, J. Fukuyama, H. Horiguchi, S. Tsuchiya, K. Fuke, T. Saito and K. Kaya, J. Chem. Phys. 85, 1806 (1986).ADSCrossRefGoogle Scholar
  98. 68.
    K. Fuke, T. Saito and K. Kaya, J. Chem. Phys. 81, 2591 (1984).ADSCrossRefGoogle Scholar
  99. 69.
    K. Fuke, T. Saito and K. Kaya, J. Chem. Phys. 79, 2487 (1983).ADSCrossRefGoogle Scholar
  100. 70.
    W.H. Breckenridge, M. Duval, C. Jouvet and B. Soep, Chem. Phys. Lett. 122, 181 (1985).ADSCrossRefGoogle Scholar
  101. 71.
    M. Duval, O.B. D’Azy, W.H. Breckenridge, C. Jouvet and B. Soep, J. Chem. Phys. 85, 6324 (1986).ADSCrossRefGoogle Scholar
  102. 72.
    W.H. Breckenridge, M. Duval, C. Jouvet and B. Soep, in Structure and Dynamics of Weakly Bound Molecular Complexes exes, ed A. Weber, Reidel, Boston (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Stuart A. Rice
    • 1
  1. 1.Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations