Advertisement

Potential Energy Surfaces for Open Shell Species

  • Piergiorgio Casavecchia
Part of the NATO ASI Series book series (NSSB, volume 227)

Abstract

In this paper we examine the present status and future prospects in the area of determination of potential energy surfaces for weakly interacting open shell systems, i.e., Van der Waals complexes where one of the partners is an open shell atom or molecule, possessing both orbital and spin degeneracy in its ground state. Extension of molecular beam scattering measurements beyond the closed shell atom-atom case to include open shell atoms and molecules with closed shell species is analyzed. The theoretical framework and computational procedures needed for deriving potential energy surfaces for open shell systems from scattering data are discussed. The complementary information obtainable from spectroscopic investigations is also considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Meyer, P.C.Hariharan, and W.Kutzelnig, J.Chem.Phys. 73, 1880 (1980); J.Schaefer and W.Meyer, J.Chem.Phys. 70, 344 (1979); H.J.Bohm and R.Ahlrichs, Mol.Phys. 55, 1159 (1985).Google Scholar
  2. 2.
    U.Buck, in “Atomic and Molecular Beam Methods”, G.Scoles, ed., Oxford, New York (1987), Vol. 1., and references therein.Google Scholar
  3. 3.
    L.Beneventi, P.Casavecchia, and G.G.Volpi, J.Chem.Phys. 84, 4828 (1986).Google Scholar
  4. 4.
    L.Beneventi, P.Casavecchia, and G.G.Volpi, in “Structure and Dynamics of Weakly Bound Molecular Complexes”, A.Weber, ed., NATO ASI Ser. C, Reidel, Dordrecht (1987), Vol. 212, p. 441.CrossRefGoogle Scholar
  5. 5.
    R.A.Aziz, in “Inert Gases”, M.L.Klein, ed., Springer, Berlin (1984), Chap. 2.Google Scholar
  6. 6.
    G.C.Maitland, M.Rigby, E.B.Smith, and W.A.Wakeham, “Intermolecular Forces”, Clarendon, Oxford (1981).Google Scholar
  7. 7.
    G.Scoles, Annu.Rev.Phys.Chem. 31, 81 (1980).Google Scholar
  8. 8.
    K.Berkling, Ch.Schlier, and P.Toschek, Z.Physik 168, 81 (1962).Google Scholar
  9. 9.
    C.H.Becker, P.Casavecchia, and Y.T.Lee, J.Chem.Phys. 69, 2377 (1978).Google Scholar
  10. 10.
    C.H.Becker, P.Casavecchia, and Y.T.Lee, J.Chem.Phys. 70, 2986 (1979).Google Scholar
  11. 11.
    C.H.Becker, J.J.Valentini, P.Casavecchia, S.J.Sibener, and Y.T.Lee, Chem.Phys.Lett. 61, 1 (1979).Google Scholar
  12. 12.
    C.H.Becker, P.Casavecchia, Y.T.Lee, R.E.Olson, and W.A.Lester, Jr., J.Chem.Phys. 70, 5477 (1979).Google Scholar
  13. 13.
    P.Casavecchia, G.He, R.K.Sparks, and Y.T.Lee, J.Chem.Phys. 75, 710 (1981).Google Scholar
  14. 14.
    P.Casavecchia, G.He, R.K.Sparks, and Y.T.Lee, J.Chem.Phys. 77, 1878 (1982).Google Scholar
  15. 15.
    V.Aquilanti, G.Liuti, F.Pirani, F.Vecchiocattivi, and G.G.Volpi, J.Chem.Phys. 65, 4751 (1976); V.Aquilanti, E.Luzzatti, F.Pirani, and G.G.Volpi, J.Chem.Phys. 73, 1181 (1980).Google Scholar
  16. 16.
    J.Tellinghuisen, P.C.Tellinghuisen, J.A.Coxon, J.E.Velazco, and D.W.Setser, J.Chem.Phys. 68, 5187 (1978).Google Scholar
  17. 17.
    A.L.Smith and P.C.Kobrinsky, J.Mol.Spectrosc. 69, 1 (1978).Google Scholar
  18. 18.
    D.L.Monts, L.M.Ziurys, S.M.Beck, M.G.Liverman, and R.E.Smalley, J.Chem.Phys. 71, 4057 (1979).Google Scholar
  19. 19.
    A.Sur, A.K.Hui, and J.Tellinghuisen, J.Mol.Spectrosc. 74, 465 (1979); J.Tellinghuisen, J.M.Hoffman, G.C.Tisone, and A.K.Hays, J.Chem.Phys. 64, 2484 (1976).Google Scholar
  20. 20.
    T.H.Dunning and P.J.Hay, J.Chem.Phys. 69, 134 (1978); P.J.Hay and T.H.Dunning, J.Chem.Phys. 69, 2209 (1978); M.Krauss, J.Chem.Phys. 29, 350 (1976).Google Scholar
  21. 21.
    V.Aquilanti, R.Candori, and F.Pirani, J.Chem.Phys. 89, 6157 (1988).Google Scholar
  22. 22.
    V.Aquilanti, E.Luzzatti, F.Pirani, and G.G.Volpi, J.Chem.Phys. 89, 6165 (1988).Google Scholar
  23. 23.
    K.Bergmann, in “Atomic and Molecular Beam. Methods”, G.Scoles, ed., Oxford, New York (1987), Vol. 1; R.Duren and E.Hasselbrink, J.Chem.Phys. 85, 1880 (1986).Google Scholar
  24. 24.
    P.J.Dagdigian, in “Atomic and Molecular Beam Methods”, G.Scoles, ed., Oxford, New York (1987), Vol. 1.Google Scholar
  25. 25.
    M.J.Verheijen and H.C.W. Beijerinck, Chem.Phys. 102, 255 (1986).Google Scholar
  26. 26.
    V.Aquilanti, G.Grossi, and F.Pirani, “Electronic and Atomic Collisions”, Invited Papers XIII ICPEAC, J.Eichler, I.V.Hertel, and N.Stolterfoht, eds., Berlin (1983), p. 441.Google Scholar
  27. 27.
    F.Vecchiocattivi, Comments At.Mol.Phys. 17, 163 (1986).Google Scholar
  28. 28.
    V.Aquilanti, F.Pirani, and F.Vecchiocattivi, in “Structure and Dynamics of weakly Bound Molecular Complexes”, A.Weber, ed., NATO ASI Ser. C, Reidel, Dordrecht (1987), Vol. 212, p. 423.CrossRefGoogle Scholar
  29. 29.
    V.Aquilanti, R.Candori, L.Mariani, and F.Pirani, J.Phys.Chem. 93, 130 (1989).Google Scholar
  30. 30.
    V.Aquilanti, G.Liuti, F.Pirani, and F.Vecchiocattivi, J.Chem.Soc.Faraday Trans. 2, 85, 955 (1989).Google Scholar
  31. 31.
    N.Hishinuma and O.Sueoka, Chem.Phys.Lett. 121, 293 (1985).Google Scholar
  32. 32.
    V.Aquilanti and G.Grossi, J.Chem.Phys. 73, 1165 (1980).Google Scholar
  33. 33.
    V.Aquilanti, P.Casavecchia, G.Grossi, and A.Lagana’, J.Chem.Phys. 73, 1173 (1980).Google Scholar
  34. 34.
    V.Aquilanti, G.Grossi, and A.Lagana’, Nuovo Cimento 63b, 7 (1981).Google Scholar
  35. 35.
    R.E.Smalley, D.A.Auerbach, P.S.H.Fitch, D.H.Levy, and L.Wharton, J.Chem.Phys. 66, 3778 (1977); R.Ahmad-Bitar, W.P.Lapatovich, D.E.Pritchard, and I.Renhorn, Phys.Rev.Lett. 39, 1657 (1977).Google Scholar
  36. 36.
    D.L.Monts, L.M.Ziurys, S.M.Beck, M.G.Liverman, and R.E.Smalley, J.Chem.Phys. 71, 4057 (1979).Google Scholar
  37. 37.
    J.M.Gardner and M.I.Lester, Chem.Phys.Lett. 137, 301 (1987).Google Scholar
  38. 38.
    C.L.Callender, S.A.Mitchell, and P.A.Hackett, J.Chem.Phys. 90, 2535 (1989).Google Scholar
  39. 39.
    G.Liuti and F.Pirani, Chem.Phys.Lett. 122, 245 (1985).Google Scholar
  40. 40.
    C.Lardeux-Dedonder, C.Jouvet, M.Richard-Viard, and D.Solgadi, J.Chem.Phys., to be published.Google Scholar
  41. 41.
    K.T.Tang and J.P.Toennies, Z.Phys.D 1, 91 (1986); G.Ihm, M.W.Cole, F.Toigo, and G.Scoles, J.Chem.Phys. 87, 3995 (1987).Google Scholar
  42. 42.
    F.Rebentrost and W.A.Lester, Jr., J.Chem.Phys. 67, 3367 (1977); L.D.Thomas, W.A.Lester, Jr., and F.Rebentrost, J.Chem.Phys. 69, 5489 (1978).Google Scholar
  43. 43.
    V.Aquilanti, R.Candori, D.Cappelletti, and F.Pirani, to be published.Google Scholar
  44. 44.
    L.Beneventi, P.Casavecchia, and G.G.Volpi, J.Chem.Phys. 85, 7011 (1986).Google Scholar
  45. 45.
    L.Beneventi, P.Casavecchia, F.Vecchiocattivi, G.G.Volpi, D.Lemoine, and M.H.Alexander, J.Chem.Phys. 89, 3505 (1988).Google Scholar
  46. 46.
    L.Beneventi, P.Casavecchia, F.Vecchiocattivi, G.G.Volpi, U.Buck, Ch.Lauenstein, and R.Schinke, J.Chem.Phys. 89, 4671 (1988).Google Scholar
  47. 47.
    P.Casavecchia, A.Lagana’, and G.G.Volpi, Chem.Phys.Lett. 112, 445 (1984).Google Scholar
  48. 48.
    L.Beneventi, P.Casavecchia, and G.G.Volpi, to be published.Google Scholar
  49. 49.
    U.Buck, Comments At.Mol.Phys. 17, 143 (1986); and references therein.Google Scholar
  50. 50.
    L.Beneventi,P.Casavecchia, and G.G.Volpi, this Volume.Google Scholar
  51. 51.
    J.Dufayard and 0.Nedelec, Chem.Phys. 71, 279 (1982); 84Google Scholar
  52. 167.
    ); Chem.Phys.Lett. 119, 234 (1985); C.Dufour, B.Pinchemel, M.Douay, J.Schamps, and M.H.Alexander, Chem.Phys. 98, 315 (1985).Google Scholar
  53. 52.
    H.W.Lulf and P.Andresen, in “Rarefied Gas Dynamics”, Academic, New York (1985), Vol. 2, p.911.CrossRefGoogle Scholar
  54. 53.
    P.Andresen, D.Hausler, and H.W.Lulf, J.Chem.Phys. 81, 571 (1984).Google Scholar
  55. 54.
    H.Joswig, P.Andresen, and R.Schinke, J.Chem.Phys. 85, 1904 (1986).Google Scholar
  56. 55.
    H.H.W.Thuis, S.Stolte, and J.Reuss, Chem.Phys. 43, 351 (1979).Google Scholar
  57. 56.
    H.H.W.Thuis, S.Stolte, J.Reuss, J.J.H. van den Biesen, and C.J.N. van den Meijdenberg, Chem.Phys. 52, 211 (1980).Google Scholar
  58. 57.
    J.Kosanetaky, U.List, W.Urban, H.Vormann, and E.H.Fink, Chem.Phys. 50, 361 (1980), and references therein.Google Scholar
  59. 58.
    G.C.Nielson, G.A.Parker, and R.T Pack, J.Chem.Phys. 64, 2055 (1976); 66, 1396 (1977).Google Scholar
  60. 59.
    G.C.Corey and M.H.Alexander, J.Chem.Phys. 85, 5652 (1986), and references therein.Google Scholar
  61. 60.
    R.N.Dixon and D.Field, Proc.R.Soc.Lond. A.366, 225 (1979); A.366, 247 (1979); A. 368, 99 (1979).Google Scholar
  62. 61.
    A.Arthurs and A.Dalgarno, Proc.R.Soc.Lond. A. 256, 54 (1960).Google Scholar
  63. 62.
    S.Green and R.N.Zare, Chem.Phys. 7, 62 (1975).Google Scholar
  64. 63.
    M.H.Alexander, J.Chem.Phys. 76, 5974 (1982).Google Scholar
  65. 64.
    K.Klar, J.Phys.B 6, 2139 (1973); M.Bertojo, A.C.Cheung, and C.H.Townes, Astrophys. J. 208, 914 (1976); M.Shapiro and H.Kaplan, J.Chem.Phys. 71, 2182 (1979); D.P.Dewangan and D.R.Flower, J.Phys.B 14, 2179 (1981); 16, 2157 (1983).Google Scholar
  66. 65.
    T.Orlikowski and M.H.Alexander, J.Chem.Phys. 79, 6006 (1983).Google Scholar
  67. 66.
    P.Andresen, H.Joswig, H.Pauly, and R.Schinke, J.Chem.Phys. 77, 2204 (1982).Google Scholar
  68. 67.
    Aa.S.Sudbo and M.M.T.Loy, J.Chem.Phys. 76, 3646 (1982).Google Scholar
  69. 68.
    P.R.R.Langridge-Smith, E.Carrasquillo M. and D.H.Levy, J.Chem.Phys. 74, 6513 (1981).Google Scholar
  70. 69.
    K.Sato, Y.Achiba, and K.Kimura, J.Chem.Phys. 81, 57 (1984); K.Sato, Y.Achiba, H.Nakamura, and K.Kimura, J.Chem.Phys. 85, 1418 (1986).Google Scholar
  71. 70.
    J.C.Miller and W.C.Cheng, J.Phys.Chem. 89, 1647 (1985); J.C.Miller, J.Chem.Phys. 86, 3166 (1987).Google Scholar
  72. 71.
    J.C.Miller, J.Chem.Phys. 90, 4031 (1989).Google Scholar
  73. 72.
    P.D.A.Mills, C.M.Western, B.J.Howard, J.Phys.Chem. 90, 4961 (1986).Google Scholar
  74. 73.
    M.Keil, J.T.Slankas, and A.Kuppermann, J.Chem.Phys. 70, 541 (1979).Google Scholar
  75. 74.
    M.Faubel, Adv.At.Mol.Phys. 19, 345 (1983).Google Scholar
  76. 75.
    A.W.Smith and A.W.Johnson, Chem.Phys.Lett. 93, 608 (1982).Google Scholar
  77. 76.
    R.T Pack, J.Chem.Phys. 60, 633 (1974); D.Secrest, J.Chem.Phys. 62, 710 (1975); R.Goldflam, S.Green, and D.J.Kouri, J.Chem.Phys. 67, 4149 (1977); G.A.Parker and R.T Pack, J.Chem.Phys. 68, 1585 (1978); D.J.Kouri, in “Atom-Molecule Collision Theory”, R.B.Bernstein, ed., Plenum, New York (1979), p. 301.Google Scholar
  78. 77.
    F.A.Gianturco and A.Palma, J.Phys.B 18, L519 (1985).Google Scholar
  79. 78.
    L.Beneventi, P.Casavecchia, G.G.Volpi, D.Lemoine, and G.C.Corey, to be published.Google Scholar
  80. 79.
    M.S.Bowers, M.Faubel, and K.T.Tang, J.Chem.Phys. 87, 5687 (1987).Google Scholar
  81. 80.
    R.T Pack, J.J.Valentini, and J.B.Cross, J.Chem.Phys. 77, 5486 (1982); R.T Pack, E.Piper, G.A.Pfeffer, and J.P.Toennies, J.Chem.Phys. 80, 4940 (1984); R.T Pack, Chem.Phys.Lett. 55, 197 (1978).Google Scholar
  82. 81.
    L.Beneventi, P.Casavecchia, F.Pirani, F.Vecchiocattivi, G.G.Volpi, A.Van der Avoird, and J.Reuss, to be published.Google Scholar
  83. 82.
    M.T.Berry, M.R.Brustein, J.R.Adamo, and M.I.Lester, J.Phys.Chem. 92, 5551 (1988); K.M.Beck, M.T.Berry, M.R.Brustein, and M.I.Lester, J.Chem.Phys., to be published; M.I.Lester, this Volume.Google Scholar
  84. 83.
    R.G.Macdonald and K.Liu, in “1989 Conference on the Dynamics of Molecular Collisions”, Asilomar, Ca, USA, July 16–21, 1989, Book of Abstracts, B32.Google Scholar
  85. 84.
    M.M.Graff and A.F.Wagner, in “1989 Conference on the Dynamics of Molecular Collisions”, Asilomar, Ca, USA, July 16–21, 1989, Book of Abstracts, A19.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Piergiorgio Casavecchia
    • 1
  1. 1.Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly

Personalised recommendations