Static and Dynamic Determinants of Left Ventricular Chamber Stiffness and Filling

  • W. H. Gaasch
  • Y. Arial
  • A. S. Blaustein
Part of the Ettore Majorana International Science Series book series (volume 21)


Ventricular filling occurs as a consequence of a left atrial to left ventricular pressure gradient which has generally been though to be primarily due to passive mechanisms influencing both chambers. Left atral pressure is determined by the compliance of the left atrium and pulmonary venous system, the central blood volume, and to some extent by the contractile strength of the atrial myocardium. Left ventricular diastolic pressure is determined by all of the static and dynamic factors which influence chamber stiffness. In this article we will outline the factors which influence the diastolic properties of the left ventricular chamber[1–6]. The discussion will be divided into a review of static factors (i.e. chamber volume, wall mass, and stiffness of the wall) and dynamic factors (i.e. pericardial and right ventricular effects, a hydraulic effect of the coronary vasculature, and the process of myocardial relaxation). This distinction is based on the notion that change in the static factors evolve very slowly, while dynamic factors may change from moment to moment. It should be emphasized, however, that these factors are interdependent and the effect of any single mechanisms is difficult to isolate and evaluate.


Dynamic Factor Coronary Perfusion Pressure Left Ventricular Relaxation Diastolic Property Myocardial Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Gaasch, H. J. Levine, M. A. Quinones, and J. K. Alexander, Left ventricular compliance: mechanisms and clinical implications, Am.J.Cardiol., 38: 645–653 (1976).CrossRefGoogle Scholar
  2. 2.
    W. Grossman and L. P. McLaurin, Diastolic properties of the left ventricle, Ann.Intern.Med., 84: 316–326 (1976).Google Scholar
  3. 3.
    I. Mirsky, Assessment of passive elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, direction of future research, Prog.Cardiovasc. Dis., 18: 277–308 (1976).CrossRefGoogle Scholar
  4. 4.
    S. A. Glantz and W. W. Parmley, Factors which affect the diastolic pressure-volume curve, Circ.Res., 42: 171–180 (1978).CrossRefGoogle Scholar
  5. 5.
    J. Ross, Jr., Acute displacement of the diastolic pressure-volume curve of the left ventricle: role of the pericardium and the right ventricle, Circulation, 59: 32–37 (1979).CrossRefGoogle Scholar
  6. 6.
    D. L. Brutsaert, P. R. Housmans, and M. A. Goethals, Dual control of relaxation: its role in the ventricular function in the mammalian heart, Circ.Res., 47: 637–652 (1980).CrossRefGoogle Scholar
  7. 7.
    D. Fleming, Galen on the motions of the blood in the heart and lungs, Isis., 46: 14–21 (1955).CrossRefGoogle Scholar
  8. 8.
    W. Harvey, Exercitatio anatomica de motu cordis et sanguinis in animalibus (translated from the latin by C. D. Leake), Thomas, Springfield, Ill. (1928).CrossRefGoogle Scholar
  9. 9.
    C. E. Francois-Frank, Sur les effects de la systole des orellettes, Arch.Physiol., 22 (2): 395–410 (1890).Google Scholar
  10. 10.
    Y. Henderson, The volume curve of the ventricles of the mammalian heart, and the significance of this curve in respect to the mechanics of the heart beat and the filling of the ventricles, Am.J.Physiol., 16: 325–367 (1906).Google Scholar
  11. 11.
    C. J. Wiggers and L. N. Katz, The contour of the ventricular volume curves under different conditions, Am.J.Physiol., 58: 439–475 (1922).Google Scholar
  12. 12.
    W. J. Meek, Cardiac Tonus, Phys.Rev., 7: 259–287 (1927).Google Scholar
  13. 13.
    C. J. Wiggers, “Physiology in Health and Disease,” 5th Edition, Lea, Philadelphia, 740 (1949).Google Scholar
  14. 14.
    H. Pouleur, J. S. Karliner, M. M. LeWinter, and J. W. Covel, Diastolic viscous properties of the intact canine left ventricle, Circ.Res., 45: 410–419 (1979).CrossRefGoogle Scholar
  15. 15.
    E. H. Sonnenblick, The structural basis and importance of restoring forces and elastic recoil for the filling of the heart, Eur.Heart J., 1(Suppl.A): 107–110 (1980).CrossRefGoogle Scholar
  16. 16.
    W. H. Gaasch, W. E. Battle, A. A. Oboler, J. S. Banas, and H. J. Levine, Left ventricular stress and compliance in man: with special reference to normalized ventricular function curves, Circulation, 45: 746–762 (1972).CrossRefGoogle Scholar
  17. 17.
    K. Shirato, R. Shabetai, V. Bhargava, D. Franklin, and J. Ross, Jr., Alteration of the left ventricular diastolic pressure-segment length relation produced by the pericardium: effects of cardiac distension and afterload reduction in conscious dogs, Circulation, 57: 1191–1198 (1978).CrossRefGoogle Scholar
  18. 18.
    T. Linderer, K. Chatterjee, W. W. Parmely, R. E. Sievers, S. A. Glantz, and J. V. Tyber, Influence of atrial systole on the Frank-Starling relation and the end-diastolic pressure-volume relation of the left ventricle, Circulation, 67: 1045–1053 (1983).CrossRefGoogle Scholar
  19. 19.
    I. Mirsky and J. S. Rankin, The effects of geometry, elasticity and external pressures on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ.Res., 44: 601–611 (1979).CrossRefGoogle Scholar
  20. 20.
    J. Spadaro, O. H. L. Bing, W. H. Gaasch, A. Franklin, J. Clement, D. Rhodes, and R. M. Weintraub, Pericardial modulation of right and left ventricular diastolic interaction, Circ.Res., 48: 233–238 (1981).CrossRefGoogle Scholar
  21. 21.
    P. F. Salisbury, C. E. Cross, and P. A. Rieben, Influence of coronary artery pressure upon myocardial elasticity, Circ. Res., 8: 794–800 (1960).CrossRefGoogle Scholar
  22. 22.
    W. H. Gaasch, O. H. L. Bing, A. Franklin, D. Rhodes, S. A. Bernard, and R. M. Weintraub, The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness, Eur.J.Cardiol., 7 (Suppl.1): 147–161 (1978).Google Scholar
  23. 23.
    W. M. Voegel, C. S. Apstein, L. L. Briggs, W. H. Gaasch, and J. Ahn, Acute alterations in left ventricular diastolic chamber stiffness. Role of the erectile effect of coronary arterial pressure and flow in normal and damaged hearts, Circ.Res., 51: 465–478 (1982).CrossRefGoogle Scholar
  24. 24.
    D. G. Allen and S. Kurihara, Calcium transients in mammalian ventricular muscle, Eur.Heart J., 1 (Suppl.A): 5–15 (1980).CrossRefGoogle Scholar
  25. 25.
    W. H. Gaasch, A. S. Blaustein, C. W. Adnrias, and B. Avitall, Myocardial relaxation II. Hemodynamic determinants of the rate of left ventricular isovolumic pressure decline, Am.J.Physiol., 239: 1.-6 (1980).Google Scholar
  26. 26.
    A. S. Blaustein and W. H. Gaasch, Myocardial relaxation VI. Effects of beta adrenergic tone and asynchrony on LVP and relaxation rate, Am.J.Physiol., 244: 417–422 (1983).Google Scholar
  27. 27.
    J. S. Karliner, M. M. LeWinter, F. Mahler, R. Engler, and R. A. O’Rourke, Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog, J.Clin.Invest., 60: 511–521 (1977).CrossRefGoogle Scholar
  28. 28.
    G. L. Raff and S. A. Glantz, Volume loading slows left ventricular isovolumic relaxation rate: evidence of load-dependent relaxation in the intact dog heart, Circ.Res., 48: 813–824 (1981).CrossRefGoogle Scholar
  29. 29.
    M. I. M. Nobel, The contribution of blood momentum to left ventricular ejection in the dog, Circ.Res., 23: 663–670 (1968).CrossRefGoogle Scholar
  30. 30.
    N. A. Goethals, I. E. Kersschat, V. A. Claes, C. F. Hermans, A. H. Jageneau, and D. L. Brutsaert, Influence of abrupt pressure increments on left ventricular relaxation (abstract), Am.J.Cardiol., 45: 392 (1980).CrossRefGoogle Scholar
  31. 31.
    M. Hori, M. Inoue, M. Fukunami, Y. Ishida, S. Nakajima, M. Kitakaze, M. Kitabatake, and H. Abe, Influence of ejection timing on left ventricular relaxation in isolated canine heart (abstract), Circulation, 66: 304 (1982).Google Scholar
  32. 32.
    M. L. Weisfeldt, J. W. Frederiksen, F. C. P. Yin, and J. L. Weiss, Evidence of incomplete left ventricular relaxation in the dog, J.Clin.Invest., 62: 1296–1302 (1978).CrossRefGoogle Scholar
  33. 33.
    A. S. Blaustein and W. H. Gaasch, Myocardial relaxation III. Reoxygenation mechanics in the intact dog heart, Circ.Res., 49: 633–639 (1981).CrossRefGoogle Scholar
  34. 34.
    J. E. Sanderson, D. G. Gibson, D. J. Brown, and J. F. Goodwin, Left ventricular filling in hypertrophic cardiomyopathy: an angiographic study, Br.Heart J., 39: 661–670 (1977).CrossRefGoogle Scholar
  35. 35.
    P. Hanrath, D. G. Mathey, R. Siegert, and W. Bleifeld, Left ventricular relaxation and filling in different forms of left ventricular hypertrophy: an echocardiographic study, Am.J. Cardiol., 45: 15–23 (1980).CrossRefGoogle Scholar
  36. 36.
    R. O. Bonow, D. R. Rosing, and S. L. Bacharach, Effects of verapamil on left ventricular systolic function and diastolic filling in patient with hypertrophic cardiomyopathy, Circulation, 64: 787–796 (1981).CrossRefGoogle Scholar
  37. 37.
    K. L. Peterson, J. Tsuji, A. Johnson, J. DiDonna, and M. M. LeWinter, Diastolic left ventricular pressure-volume and stress-strain relations in patients with valvular aortic stenosis and left ventricular hypertropy, Circulation, 58: 77–89 (1978).CrossRefGoogle Scholar
  38. 38.
    W. H. Gaasch, O. H. L. Bing, and I. Mirsky, Chamber compliance and myocardial stiffness in left ventricular hypertrophy, Eur.Heart J., 3 (Suppl.A): 139–145 (1982).CrossRefGoogle Scholar
  39. 39.
    L. A. Sordahl, W. B. McCollum, W. G. Wood, and A. Schwartz, Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure, Am.J.Physiol., 224: 479–487 (1973).Google Scholar
  40. 40.
    J. E. Sanderson, T. A. Traill, M. G. Sutton, D. J. Brown, D. G. Gibson, and J. F. Goodwin, Left ventricular relaxation and filling in hypertrophic cardiomyopathy: an echocardiographic study, Br.Heart J., 40: 596–601 (1978).CrossRefGoogle Scholar
  41. 41.
    L. A. Reduto, W. J. Wickemeyer, J. B. Young, L. A. DelVentura, J. W. Reid, D. H. Glaeser, M. A. Quinones, and R. R. Miller, Left ventricular diastolic performance at rest and during exercise in patients with coronary artery disease: assessment with first pass radionuclide angiography, Circulation, 63: 1228–1237 (1981).CrossRefGoogle Scholar
  42. 42.
    R. O. Bonow, S. L. Bacharach, M. V. Green, K. M. Kent, D. R. Rosing, L. C. Lipson, M. B. Leon, and S. E. Epstein, Impaired left ventricular diastolic filling in patients with coronary artery disease: assessment with radionuclide angiography, Circulation, 64: 315–323 (1981).CrossRefGoogle Scholar
  43. 43.
    J. D. Carroll, O. M. Hess, H. O. Hirzel, and H. P. Krayenbuehl, Dynamics of left ventricular filling at rest and during exercise, Circulation, 68: 59–67 (1983).CrossRefGoogle Scholar
  44. 44.
    E. M. Dwyer, Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing, Circulation, 42: 1111–1122 (1970).CrossRefGoogle Scholar
  45. 45.
    W. H. Barry, J. Z. Brooker, E. L. Alderman, and D. C. Harrison, Changes in diastolic stiffness and tone of the left ventricle during angina pectoris, Circulation, 49: 255–263 (1974).CrossRefGoogle Scholar
  46. 46.
    T. Mann, S. Goldberg, G. H. Mudge, and W. Grossman, Factors contributing to altered left ventricular diastolic properties during angina pectoris, Circulation, 59: 14–20 (1979).CrossRefGoogle Scholar
  47. 47.
    P. D. Bourdillon, B. H. Lorell, I. Mirsky, W. J. Paulus, J. Wynne, and W. Grossman, Increased regional myocardial stiffness of the left ventricle during pacing induced angina in man, Circulation, 67: 316–323 (1983).CrossRefGoogle Scholar
  48. 48.
    W. Grossman and J. T. Mann, Evidence for impaired left ventricular relaxation during acute ischemia in man, Eur.J.Cardiol., 7 (Suppl.1): 239–249 (1978).Google Scholar
  49. 49.
    O. H. L. Bing, J. F. Keefe, M. J. Wold, L. J. Finkelstein, and H. J. Levine, Tension prolongation during recovery from hypoxia, J.Clin.Invest., 50: 660–668 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. H. Gaasch
    • 1
  • Y. Arial
    • 1
  • A. S. Blaustein
    • 1
  1. 1.Dept. of MedicineTufts University School of Medicine and the Veterans Adm. Medical CenterBostonUSA

Personalised recommendations