Excitatory Amino Acids and Divalent Cations in the Kindling Model of Epilepsy

  • J. T. Slevin
  • E. J. Kasarskis
  • T. C. Vanaman
  • M. Zurini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


The epilepsies are chronic disorders of the central nervous system characterized by recurrent convulsive or non-convulsive seizures. Recent estimates suggest between 20 and 40 million people may be affected worldwide. One research strategy for investigating the neurobiological mechanisms underlying the induction and maintenance of the epileptic state has been the development of experimental animal models. Recently, one major model in particular has emerged as a focus of intense research effort: the kindling phenomenon first described by Goddard et al. (1969). The partial seizures, which constitute the behavioral manifestations of the amygdala-kindled model, are considered to represent the best available analogy to human complex partial (temporal lobe, ‘psychomotor’, limbic) epilepsy (McNamara, 1984a).


Long Term Potentiation Excitatory Amino Acid Mossy Fiber Perforant Path Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, M.C., Killam, E.K., and Fischer, G.L., 1981, The influence of Dpenicillamine treatment upon seizure activity and trace metal status in the Senegalese baboon, Papio papio, J. Pharmacol. Exp. Therap., 217: 138.Google Scholar
  2. Baudry, M., Siman, R., Smith, E.K., and Lynch, G., 1983, Regulation by calcium ions of glutamate receptor binding in hippocampal slices, Europ. J. Pharmacol., 90: 161.CrossRefGoogle Scholar
  3. Charton, G., Rovira, C., Ben-Ari, Y., and Leviel, V., 1985, Spontaneous and evoked release of endogenous Zn + in the hippocampal mossy fiber zone of the rat in situ, Exp. Brain Res., 58: 202.Google Scholar
  4. Chung, S.H., and Johnson, M.S., 1983, Divalent transition-metal ions (Cu2+and Zn2+) in the brains of epileptogenic and normal mice, Brain Res., 280:323.PubMedCrossRefGoogle Scholar
  5. Croucher, M.J., Collins, J.F., and Meldrum, B.S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science, 216: 899.PubMedCrossRefGoogle Scholar
  6. Dasheiff, R.M., and McNamara, J.0., 1982, Intradentate colchicine retards the development of amygdala kindling, Ann. Neurol., 11: 347.PubMedCrossRefGoogle Scholar
  7. DeLorenzo, R.J., 1984, Calmodulin systems in neuronal excitability: a molecular approach to epilepsy, Ann. Neurol., 16: S104.PubMedCrossRefGoogle Scholar
  8. DiChiara, G., and Gessa, G.L., 1981, Glutamate as a Neurotransmitter, Raven Press, New York.Google Scholar
  9. Dolphin, A.C., 1983,. The excitatory amino acid antagonist y-D-glutamylglycine masks rather than prevents long term potentiation of the perforant path, Neuroscience, 10: 377.PubMedCrossRefGoogle Scholar
  10. Donaldson, J., St.-Pierre, T., Minnich, J., and Barbeau, A., 1971, Seizures in rats associated with divalent cation inhibition of Na+/K+ ATPase, Can. J. Biochem., 51: 87.Google Scholar
  11. Ebadi, M., and Pfeiffer, R.F., 1984, Zinc in neurological disorders and in experimentally induced epileptiform seizures, in: The Neurobiology of Zinc. Part B: Physiochemistry, Anatomy and Techniques, C.J. Frederickson, G.A. Howell and E.J. Kasarskis, eds., Alan R. Liss, New York, p. 307.Google Scholar
  12. Evans, M.C., Griffiths, T., and Meldrum, B.S., 1983, Early hippocampal changes in the rat following bicuculline and L-allyl lycine-induced seizures: a light and electron microscope study, Neuropathol. Appl. Neurobiol., 9: 39.PubMedCrossRefGoogle Scholar
  13. Fonnum, F., Fosse, V.M., and Allen, C.N., 1983, Identification of excitatory amino acid pathways in the mammalian nervous system, in: Excitotoxins, K. Fuxe, P.J. Roberts, and R. Schwartz, eds., Macmillan Press, London, p. 3.Google Scholar
  14. Frederickson, C.J., Klitenick, M.A., Manton, W.I., and Kirkpatrick, J.B., 1983, Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat, Brain Res., 273: 335.PubMedCrossRefGoogle Scholar
  15. Gilly, W.F., and Armstrong, C.M., 1982a, Slowing of sodium channel opening kinetics in squid axon by extracellular zinc, J. Gen. Physiol., 79: 935.PubMedCrossRefGoogle Scholar
  16. Gilly, W.F., and Armstrong, C.M., 1982b, Divalent cations and the activation kinetics of potassium channels in squid giant axons, J. Gen. Physiol., 79: 965.PubMedCrossRefGoogle Scholar
  17. Goddard, G.V., McIntyre, D.C., and Leech, C.K., 1969, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol., 25: 295.PubMedCrossRefGoogle Scholar
  18. Goddard, G.V., 1981, The continuing search for mechanism, in: Kindling 2, J.A. Wada, ed., Raven Press, New York, p. 1.Google Scholar
  19. Howell, G.A., Welch, M.G., and Frederickson, C.J., 1984, Stimulation-induced uptake and release of zinc in hippocampal slices, Nature, 308: 736.PubMedCrossRefGoogle Scholar
  20. Kalichman, M.W., 1982, Neurochemical correlates of the kindling model of epilepsy, Neurosci. Behay. Rev., 6: 165.CrossRefGoogle Scholar
  21. Liebowitz, N.R., Pedley, T.A., and Cutler, R.W., 1978, Release of y-aminobutyric acid from hippocampal slices of the rat following generalized seizures induced by daily electrical stimulation of entorhinal cortex, Brain Res., 138: 369.CrossRefGoogle Scholar
  22. London, E.D., and Coyle, J.T., 1979, Specific binding of [EH] kainic acid to receptor sites in rat brain, Mol. Pharmacol., 15: 492.PubMedGoogle Scholar
  23. Maru, E., Tatsuno, J., Okamoto, J., and Ashida, H., 1982, Development and reduction of synaptic potentiation induced by perforant path kindling, Exp. Neurol., 38: 409.CrossRefGoogle Scholar
  24. Mayer, M.L., WQstbrook, G.L., and Guthrie, P.R., 1984, Voltage-dependent block by Mg + of NMDA responses in spinal cord neurones, Nature, 309: 261.PubMedCrossRefGoogle Scholar
  25. McCartney, J.E., Klevit, R.E., Blum, J.J., and Vanaman, T.C., 1983, Chemical studies of calmodulin and the regulation of motile systems, in: Calcium Binding Proteins 1983, B. deBernard, G.L. Sottorasa, G. Sandri, E. Carafoli, A.N. Taylor, T.C. Vanaman, and R.J.P. Williams, eds., Elsevier, North Holland Biomedical Press, Amsterdam, p. 273.Google Scholar
  26. McNamara, J.0., Byrne, M.C., Dasheiff, R.M., and Fitz, J.G., 1980a, The kindling model of epilepsy: a review, Frog. Neurobiol., 15: 139.CrossRefGoogle Scholar
  27. McNamara, J.O., Peper, A.M., and Patrone, V., 1980b, Repeated seizures induce long-term elevation of hippocampal benzodiazepine receptors, Proc. Natl. Acad. Sci. USA, 77: 3029.PubMedCrossRefGoogle Scholar
  28. McNamara, J.O., 1984a, Kindling: an animal model of complex partial epilepsy, Ann. Neurol., 16: S72.PubMedCrossRefGoogle Scholar
  29. McNamara, J.0., 1984b, Role of neurotransmitters in seizure mechanisms in the kindling model of epilepsy, Fed. Proc., 43: 2516.PubMedGoogle Scholar
  30. Meldrum, B.S., Croucher, M.J., Badman, G., and Collins, J.F., 1983, Anti-epileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett., 39: 101.CrossRefGoogle Scholar
  31. Mena, E.E., Monaghan, D.T., Whitmore, S.R., and Cotman, C.W., 1985, Cations differentially affect subpopulations of L-glutamate receptors in rat synaptic plasma membranes, Brain Res., 329: 319.PubMedCrossRefGoogle Scholar
  32. Messenheimer, J.A., Harris, E.W., and Steward, 0., 1979, Sprouting fibers gain access to circuitry transynaptically altered by kindling, Exp. Neurol., 65: 469.CrossRefGoogle Scholar
  33. Meves, H., 1976, The effect of zinc on the late displacement current in squid giant axons, J. Physiol., 254: 787.PubMedGoogle Scholar
  34. Mody, I., and Miller, J.J., 1985, Levels of hippocampal calcium and zinc following kindling-induced epilepsy, Can. J. Physiol. Pharmacol., 65: 159.CrossRefGoogle Scholar
  35. Monaghan, D.T., and Cotman, C.W., 1982, The distribution of rill kainic acid binding sites in rat CNS as determined by autoradiography, Brain Res., 252: 91.Google Scholar
  36. Peterson, D.W., Collins, J.F., and Bradford, H.F., 1983, The kindled amygdala model of epilepsy: anticonvulsant action of amino acid antagonists, Brain Res., 275: 169.PubMedCrossRefGoogle Scholar
  37. Porsche, E., 1983, Zinc prevents kainic acid induced seizures in rats, IRCS Med. Sci., 11: 599.Google Scholar
  38. Sastry, B.R., and Goh, J.W., 1984, Long-lasting potentiation in hippocampus is not due to an increase in glutamate receptors, Life Sci., 34: 1497.PubMedCrossRefGoogle Scholar
  39. Savage, D.D., and McNamara, J.0., 1982, Kindled seizures reduce a select subpopulation of 3H-QNB binding sites in rat dentate gyrus, J. Pharmacol. Exp. Ther., 222: 670.PubMedGoogle Scholar
  40. Savage, D.D., Nadler, V.J., and McNamara, J.0., 1984, Reduced kainic acid binding in rat hippocampal formation after limbic kindling, Brain Res., 323:128.PubMedCrossRefGoogle Scholar
  41. Savage, D.D., Werling,.L., Nadler, V.J., and McNamara, J.0., 1982, Selective increase in L-[H] glutamate binding to a quisqualate-sensitive site on hippocampal synaptic membranes after angular bundle kindling, Europ. J. Pharmacol., 85: 255.Google Scholar
  42. Savage, D.D., Werling, L.L., Nadler, V.J., and McNamara, J.0., 1984, Selective and reversible increase in the number of quisqualate-sensitive glutamate binding sites on hippocampal synaptic membranes after angular bundle kindling, Brain Res., 307: 332.PubMedCrossRefGoogle Scholar
  43. Schwarcz, R., and Meldrum, B.S., 1985, Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders, Lancet, 2: 140.PubMedCrossRefGoogle Scholar
  44. Siman, R., Baudry, M., and Lynch, G., 1985, Regulation of glutamate receptor binding by the cytoskeletal protein fodrin, Nature, 313: 225.Google Scholar
  45. Slevin, i.T., and Ferrara, L.P., 1985, Lack of effect of entorhinal kindling on LE H] glutamic acid presynaptic uptake and postsynaptic binding in hippocampus, Exp. Neurol., 89: 48.PubMedCrossRefGoogle Scholar
  46. Slevin, J.T., and Kasarskis, E.J., 1985, Effects of zinc on markers of glutamate and aspartate neurotransmission in rat hippocampus, Brain Res., 334: 281.PubMedCrossRefGoogle Scholar
  47. Slevin, J.T., and DeKosky, S.T., 1986, Stability of sialogangliosides in kindled hippocampus, Exp. Neurol., 91: 208.PubMedCrossRefGoogle Scholar
  48. Smart, T.G., and Constanti, A., 1983, Pre- and postsynaptic effects of zinc on in vitro prepyriform neurones, Neurosci. Lett., 40: 205.PubMedCrossRefGoogle Scholar
  49. Storm-Mathisen, J., 1981, Glutamate in hippocampal pathways, in: Glutamate as a Neurotransmitter, G. DiChiara and G.L. Gessa, eds., Raven Press, New York, p. 43.Google Scholar
  50. Tuff, L.P., Racine, R.J., and Adamac, R., 1983, The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired pulse depression, Brain Res., 277: 79.PubMedCrossRefGoogle Scholar
  51. Wasterlain, C.G., and Farber, D.B., 1984, Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus, Proc. Natl. Acad. Sci. USA, 81: 1253.PubMedCrossRefGoogle Scholar
  52. Wolf, G., and Schmidt, W., 1982, Zinc as a putative regulatory factor of glutamate dehydrogenase activity in glutamergic systems, in: Neuronal Plasticity and Memory Formation, C. Ajmone-Marsan and H. Matthies, eds., Raven Press, New York, p. 437.Google Scholar
  53. Wright, D.M., 1984, Zinc: effect and interaction with other cations in the cortex of the rat, Brain Res., 311: 343.PubMedCrossRefGoogle Scholar
  54. Zaczek, R., and Coyle, J.T., 1982,. Excitatory amino acid analogues: neuro-toxicity and seizures, Neuropharmacology, 21: 15.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. T. Slevin
    • 1
  • E. J. Kasarskis
    • 1
  • T. C. Vanaman
    • 1
  • M. Zurini
    • 1
  1. 1.V. A. Medical Center and Departments of Neurology Pharmacology and BiochemistryUniversity of KentuckyUSA

Personalised recommendations