Advertisement

Expression of Vertebrate Amino Acid Receptors in Xenopus Oocytes

  • T. G. Smart
  • A. Constanti
  • K. Houamed
  • G. Bilbe
  • D. A. Brown
  • E. A. Barnard
  • C. VanRenterghem
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)

Abstract

The apparent ubiquity of both excitatory and inhibitory amino acid receptors in the mammalian central nervous system is now well established. Despite the passage of approximately 23 years since the inception of γ-aminobutyric acid (GABA) and glutamate receptors (Curtis and Watkins, 1963; Krnjevic and Phillis, 1963), these receptor sites and their associated ‘ion channels’ have proved difficult to study quantitatively, mainly because of limited pharmacological accessibility and complicated tissue topography.

Keywords

Xenopus Oocyte Excitatory Amino Acid Gaba Receptor Voltage Clamp Glycine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashwood, T.J., Collingridge, G.L., Herron, C.E., and Wheal, H.V., 1984, Rectification of somatic y-aminobutyric acid ( GABA) responses in rat hippocampal slices, J. Physiol., 357: 15.Google Scholar
  2. Ault, B., Evans, R.H., Francis, A.A., Oakes, D.J., and Watkins, J.C., 1980, Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations, J. Physiol., 307: 413.PubMedGoogle Scholar
  3. Aviv, H., and Leder, P., 1972, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc, Natl. Acad. Sci. USA, 69: 1408.Google Scholar
  4. Barnard, E.A., Miledi, R., and Sumikawa, K., 1982, Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes, Proc. Roy. Soc. Lond. B., 215: 241.Google Scholar
  5. Barnard, E.A., Beeson, D., Bilbe, G., Brown, D.A., Constanti, A., Houamed, K., and Smart, T.G., 1984, A system for the translation of receptor messenger RNA and the study of the assembly of functional receptors, J. Receptor Res., 4: 681.Google Scholar
  6. Chirgwin, J.M., Przybyla, A.E., McDonald, R.J., and Rutter, W.J., 1979, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry, 18: 5294.PubMedCrossRefGoogle Scholar
  7. Curtis, D.R., and Watkins, J.C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J, Physiol., 166: 1.Google Scholar
  8. Curtis, D.R., Duggan, A.W., and Johnston, G.A.R., 1971, The specificity of strychnine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res., 12: 547.Google Scholar
  9. Dumont, J.N., 1972, Oogenesis in Xenopus laevis ( Daudin) I, J. Morphol., 136: 153.Google Scholar
  10. Gundersen, C.B., Miledi, R., and Parker, I., 1984a, Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes, Nature, 308: 421.PubMedCrossRefGoogle Scholar
  11. Gundersen, C.B., Miledi, R., and Parker, I., 1984b, Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes, Proc. Rov, Soc. Lond. B., 221: 127.Google Scholar
  12. Gundersen, C.B., Miledi, R., and Parker, I., 1984c, Properties of human brain glycine receptors expressed in Xenopus oocytes, Proc. Roy. Soo. Lond. B., 221: 235.Google Scholar
  13. Gurdon, J.B., Lane, C.D., Woodland, H.R., and Marbaix, G., 1971, Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells, Nature, 233: 177.PubMedCrossRefGoogle Scholar
  14. Houamed, K.M., Bilbe, G., Smart, T.G., Constanti, A., Brown, D.A., Barnard, E.A., and Richards, B.M., 1984, Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature, 310: 318.PubMedCrossRefGoogle Scholar
  15. Krnjevié, K., and Phillis, J.W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol., 165: 274.Google Scholar
  16. Kusano, K., Miledi, R., and Stinnakre, J., 1982, Cholinergie and catecholaminergic receptors in the Xenopus oocyte membrane, J. Physiol., 328: 143.PubMedGoogle Scholar
  17. Miledi, R., Parker, I., and Sumikawa, K., 1982, Synthesis of chick brain GABA receptors by frog oocytes, Proc. Roy. Soc. Lond. B., 216: 509.Google Scholar
  18. Miledi, R., and Parker, I., 1984, Chloride current induced by injection of calcium into Xenopus oocytes, J, Physiol., 357: 173.Google Scholar
  19. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature, 307: 604.PubMedCrossRefGoogle Scholar
  20. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature, 307: 462.PubMedCrossRefGoogle Scholar
  21. Sigel, E., Stephenson, F.A., Mamalaki, C., and Barnard, E.A., 1983, A y-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. Purification and partial characterization, J, Biol. Chem., 258: 6965.Google Scholar
  22. Simmonds, M.A., 1982, Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus, Eur. J. Pharmacol „ 80: 347.Google Scholar
  23. Smart, T.G., Constanti, A., Bilbe, G., Brown, D.A., and Barnard, E.A., 1983, Synthesis of the functional chick brain benzodiazepine barbiturateGABA receptor complex in mRNA injected Xenopus oocytes, Neurosci, Lett., 40: 55.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. G. Smart
    • 1
  • A. Constanti
    • 1
  • K. Houamed
    • 1
  • G. Bilbe
    • 2
    • 3
  • D. A. Brown
    • 1
  • E. A. Barnard
    • 2
  • C. VanRenterghem
    • 1
    • 2
  1. 1.Department of Pharmacology School of PharmacyMRC Neuropharmacology Research GroupLondonUK
  2. 2.MRC Molecular Neurobiology Research Group, Department of BiochemistryImperial College of Science and TechnologyLondonUK
  3. 3.Molecular Genetics DepartmentSearle Research/DevelopmentHigh Wycombe, BucksUK

Personalised recommendations