Effects of Kainate on CA1 Hippocampal Neurons Recorded in Vitro

  • E. Cherubini
  • C. Rovira
  • M. Gho
  • Y. Ben-Ari
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


The endogenous excitatory amino acids aspartate and glutamate are considered the most likely candidates as putative transmitters in the mammalian CNS. They act on one or more receptors. On the basis of electrophysiological studies, using mainly spinal cord preparations, three classes of excitatory amino acid receptors have been proposed: NMDA, quisqualate and kainate (Watkins and Evans, 1981).


Current Pulse Excitatory Amino Acid Kainic Acid Potassium Conductance Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P.R. 1976, Drug blockade of open end-plate channels, J. Physiol., 260:531.Google Scholar
  2. Aitken, P.G., 1985, Kainic acid and penicillin: differential effects on excitatory and inhibitory interactions in the CA1 region of the hippocampal slice, Brain Res., 325: 261.Google Scholar
  3. Aldenhoff, J.B., Gruol, D.L., Rivier, J., Vale, W., and Siggins, G.R., 1983, Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons, Science, 221: 875.Google Scholar
  4. Barrett, E.F., Barret, J.N., and Crill, W.E., 1980, Voltage sensitive outward currents in cat motoneurones, J. Physiol., 304:251.Google Scholar
  5. Ben-Ari, Y., 1985, Limbic seizure and brain damage produced by kainie acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, 14: 375.Google Scholar
  6. Collingridge, G.L., Kehl, S.J., Loo, R., and McLennan, H., 1983, Effects of kainic and other amino acids on synaptic excitation in rat hippocampal slices: 1. Extracellular analysis, Exp. Brain Res., 52:170.Google Scholar
  7. Colquhoun, D., 1981, The kinetics of conductance changes at nicotinic receptors of the muscle end-plate and of ganglia, in: Drug Receptors and Their Effectors, N.J.M. Birdsall, ed., MacMillan, London, p. 107.Google Scholar
  8. Di Francesco, D., and Ojeda, C., 1980, Properties of the current in the sino-atrial node of the rabbit compared with those of the current iK2 in Purkinje fibres, J. Physiol., 308:353.Google Scholar
  9. Dingledine, R., 1983, N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J, Phvsiol., 343:385.Google Scholar
  10. Fisher, R.A., and Alger, R.E., 1984, Electrophysiological mechanisms of kainie acid induced epileptiform activity in the rat hippocampal slice, J. Neurosci., 4:1323.Google Scholar
  11. Gormann, A.L.F., and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurones, J. Physiol., 296:393.Google Scholar
  12. Gustafsson, B., and Wigström, H., Evidence for two types of afterhyperpolari- zation in CA1 pyramidal cells in the hippocampus, Brain Res., 206: 462.Google Scholar
  13. Haas, H.L., and Konnerth, A., 1983, Histamine and noradrenaline decrease calcium activated potassium conductance in hippocampal pyramidal cells, Nature, 302: 432.Google Scholar
  14. Hablitz, J.J., and Johnston, D., 1981, Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons, Cell.. Mol. Neurobiol., 1:325.Google Scholar
  15. Halliwell, J.V., and Adams, P.R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res., 250: 71.Google Scholar
  16. Hoston, J.R., Prince, D.A., and Schwartzkroin, P.A., 1979, Anomalous inward rectification in hippocampal neurones, J. Neurophysiol., 42:889.Google Scholar
  17. Ishida, A.T., and Neyton, J., Quisqualate and L-glutamate inhibit retinal horizontal-cell responses to kainate, Proc. Natl.. Acad. Sci. USA, 82:1837.Google Scholar
  18. Kaneko, A., and Tachibana, M., 1985, Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of carassius auratus retina, J. Physiol., 358:169.Google Scholar
  19. Kramer, R.H., and Zucker, R.S., 1985, Calcium-induced inactivation of calcium current causes the interburst hyperpolarization of Aplvsia bursting neurones, J. Physiol., 362:131.Google Scholar
  20. Madison, D.V., and Nicoll, R.A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature, 299: 636.Google Scholar
  21. Madison, D.V., and Nicoll, R.A., 1984, Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro, J. Phvsiol., 354:319.Google Scholar
  22. North, R.A., Morita, K., and Tokimasa, T., 1983, Peptide actions on autonomic nerves, in: Systemic Role of Regulatory Peptides, S.R. Bloom, J.M.Google Scholar
  23. Polak,and E.Lindenlaub,eds.,Springer-Verlag,Stuttgart-New York,P.77.Google Scholar
  24. North, R.A., and Tokimasa, T., 1983, Depression of calcium-dependent potassium conductance by muscarinic agonists, J. Phvsiol., 342:253.Google Scholar
  25. Nowak, L., Bregestovski, P., Asher, P., Herbet, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature, 307: 462.Google Scholar
  26. Pepper, C., and Henderson, G., 1980, Opiates and opioid peptides hyperpolarize locus coeruleus neurones in vitro, Science, 209:394.Google Scholar
  27. Robinson, J.H., and Deadwyler, S.A., 1981, Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice, Brain Res., 221: 117.Google Scholar
  28. Tachibana, M., 1985,. Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius Auratus, J. Physiol., 358:153.Google Scholar
  29. Tillotson, D., 1979,. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons, Proc. Natl. Acad. Sci. USA, 76:1497.Google Scholar
  30. Tokimasa, T., 1984, Muscarinic agonists depress calcium-dependent gk in bullfrog sympathetic neurons, J. Autonom. Nerv. Syst., 10:107.Google Scholar
  31. Watkins, J.C., and Evans, R.H., 1981, Excitatory amino acid transmitters, Ann. Rev. Pharmacol. Toxicol., 21:165.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. Cherubini
    • 1
    • 2
  • C. Rovira
    • 1
    • 2
  • M. Gho
    • 1
    • 2
  • Y. Ben-Ari
    • 1
    • 2
  1. 1.LPN, CNRSGif-sur-YvetteFrance
  2. 2.INSERM-U29, 123 Bd de Port-RoyalHôpital de Port-RoyalParisFrance

Personalised recommendations