Synchronization of Pyramidal Cell Firing by Ephaptic Currents in Hippocampus in Situ

  • K. Krnjević
  • T. Dalkara
  • C. Yim
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


Once it became clear that excitable cells generate significant electrical discharges, the idea that cell-to-cell communication is normally mediated by electrical currents came very naturally. Originally, such a mechanism was not conceived as requiring any specialized low resistance junctions, and electrical transmission was thus thought to be the predominant method of junctional transmission (Eccles, 1936).


Pyramidal Cell Hippocampal Slice Population Spike Pyramidal Cell Layer Firing Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., Bliss, T.V.P., and Skrede, K.K., 1971, Unit analysis of hippocampal population spikes, Exp. Brain Res., 13: 208.Google Scholar
  2. Arvanitaki, A., 1942, Effects evoked in an axon by the activity of a conti-guous one, J. Neurophysiol., 5: 89.Google Scholar
  3. Ben-Ari, Y., Krnjevié, K., Reiffenstein, R.J., and Reinhardt, W., 1981,. Inhibitory conductance changes and action of GABA in rat hippocampus, Neuroscience, 6: 2445.Google Scholar
  4. Bremer, F., 1941, Le tetanos strychnique et le mecanisme de la synchron-isation neuronique, Arch. Int. Physiol., 51: 211.Google Scholar
  5. Clark, J.W., and Plonsey, R., 1971, Fiber interaction in a nerve trunk, Biophvs. J., 11: 281.Google Scholar
  6. Dalkara, T., Krnjevié, K., Ropert, N., and Yim, C.Y., 1986,. Chemical modu-lation of ephaptic activation of CA3 hippocampal pyramids, Neuroscience, 17: 361.Google Scholar
  7. Dudek, F.E., Andrew, R.D., MacVicar, B.A., Snow, R.W., and Taylor, C.P., 1983, Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability, H.H. Jasper and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 31.Google Scholar
  8. Eccles, J.C., 1936, Synaptic and neuro-muscular transmission, Ergeb. Physiol., 38: 339.Google Scholar
  9. Furukawa, T., and Furshpan, E.J., 1963, Two inhibitory mechanisms in the Mauthner neurons of goldfish, J. Neurophvsiol., 26: 140.Google Scholar
  10. Gerard, R.W., and Libet, B., 1940, The control of normal and ‘convulsive’ brain potentials, Am. J. Psychiatry, 96: 1125.Google Scholar
  11. Green, J.D., 1964, The hippocampus, Phvsiol. Rev., 44: 561.Google Scholar
  12. Jefferys, J.G.R., and Haas, H.L., 1982, Synchronized bursting of CAS hippo-campal pyramidal cells in the absence of synaptic transmission, Nature, 300: 448.PubMedCrossRefGoogle Scholar
  13. Jefferys, J.G.R., 1984, Current flow through hippocampal slices, Soc. Neurosçi. Abstr., 10: 1074.Google Scholar
  14. Katz, B., and Schmitt, O.H., 1940, Electric interaction between two adjacent nerve fibers, J. Phvsiol., 97: 471.Google Scholar
  15. Korn, H., and Faber, D.S., 1980, Electrical field effect interactions in the vertebrate brain, Trends Neurosci., 3: 6.Google Scholar
  16. Krnjevic, K., and Ropert, N., 1982, Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum, Neuroscience, 7: 2165.PubMedCrossRefGoogle Scholar
  17. Leung, L.-W.S., 1979, Potentials evoked by alvear tract in hippocampal CA1 region of rats. I. Topographical projection, component analysis, and correlation with unit activities, J, Neurophysiol., 42: 1557.Google Scholar
  18. Markin, V.S., 1973, Electrical interaction of parallel non-myelinatednerve fibers. III. Interaction in bundles, Biophysics, 18: 324.Google Scholar
  19. Morris, M.E., and Krnjevié, K., 1980, Slow diffusion of Ca2+ in the rat’s hippocampus, Can, J. Physiol. Pharmacol., 59: 1022.Google Scholar
  20. Nelson, P.G., 1966, Interaction between spinal motoneurons of the cat, J. Neurophysiol., 29: 275.PubMedGoogle Scholar
  21. O’Keefe, J., and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Clarendon Press, Oxford.Google Scholar
  22. Ranck, J.B., 1973, Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I. Behavioral correlates and firing repertoires, Exp. Neurol., 41:461.Google Scholar
  23. Rasminsky, M., 1980, Ephaptic transmission between single nerve fibers in the spinal nerve roots of dystrophic mice, J. Physiol., 305: 151.PubMedGoogle Scholar
  24. Sperti, L., Gessi, T., and Volta, F., 1967, Extracellular potential fieldof antidromically activated CA1 pyramidal neurons, Brain Res., 3: 343.PubMedCrossRefGoogle Scholar
  25. Taylor, C.P., and Dudek, F.E., 1982,. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science, 218: 810.Google Scholar
  26. Taylor, C.P., and Dudek, F.E., 1984a, Excitation of hippocampal pyramidal cells by an electrical field effect, J. Neurophysiol., 52: 126.PubMedGoogle Scholar
  27. Taylor, C.P., and Dudek, F.E., 1984b, Synchronization without active chemical synapses during hippocampal afterdischarges, J. Neurophysiol., 52: 143.PubMedGoogle Scholar
  28. Taylor, C.P., Krnjevié, K., and Ropert, N., 1984, Facilitation of hippocampal CA3 pyramidal cell firing by electrical fields generated antidromically, Neuroscience, 11: 101.PubMedCrossRefGoogle Scholar
  29. Traub, R.D., Dudek, F.E., Snow, R.W., and Knowles, W.G., 1985, Computer simulations indicate that electrical field effects contribute to the shape of the epileptiform field potential, Neuroscience, 15: 947.PubMedCrossRefGoogle Scholar
  30. Yim, C.Y., Krnjeviô, K., and Dalkara, T., 1986, Ephaptically-generated potentials in CA1 neurons of the rat’s hippocampus in situ, J. Neurophysiol., in press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. Krnjević
    • 1
  • T. Dalkara
    • 1
  • C. Yim
    • 1
  1. 1.Departments of Anaesthesia Research and PhysiologyMcGill UniversityMontrealCanada

Personalised recommendations