Advertisement

Inward Currents in Cat Neocortical Neurons Studied In Vitro

  • W. E. Crill
  • P. C. Schwindt
  • J. A. Flatman
  • C. E. Stafstrom
  • W. Spain
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)

Abstract

Two distinct types of clinical recurrent seizures or epilepsy have been identified: those that begin focally in cortex (partial seizures) and those that appear to begin synchronously in both hemispheres (generalized seizures). Because most experimentalists use focal physical or chemical techniques to initiate seizures, our concepts about epileptic mechanisms are, therefore, more applicable to clinical partial epilepsy.

Keywords

Potassium Current Neocortical Neuron Repetitive Firing Calcium Spike Neocortical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.R., 1982, Voltage-dependent conductances of vertebrate neurones, Trends Neurosci., 5: 116.CrossRefGoogle Scholar
  2. Adams, P.R., Brown, D.A., and Constanti, A., 1982, M-currents and other potassium currents in bullfrog sympathetic neurons, J. Physiol., 330: 537.PubMedGoogle Scholar
  3. Ayala, G.F., Matsumoto, H., and Gumnit, R.J., 1970, Excitability changes and inhibitory mechanisms in neocortical neurons during seizures, J. Neurophvsiol., 33: 73.Google Scholar
  4. Ayala, G.F., Dichter, M., Gumnit, R.J., Matsumoto, H., and Spencer, W.A., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms, Brain Res., 52: 1.Google Scholar
  5. Barrett, E.F., Barrett, J.N., and Crill, W.E., 1980, Voltage-sensitive outward currents in cat motoneurones, J. Physiol., 304: 251.PubMedGoogle Scholar
  6. Barrett, J.N. and Crill, W.E., 1980, Voltage clamp of cat motoneurone somata: properties of a fast inward current, J. Physiol., 304: 231.PubMedGoogle Scholar
  7. Brown, D.A., and Adams, P.R., 1980, Muscarinic suppression of a novel voltage-sensitive K+ current in vertebrate neurone, Nature, 283: 673.PubMedCrossRefGoogle Scholar
  8. Brown, D.A., and Griffith, W.H., 1983a, Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig, J. Physiol., 337: 287.PubMedGoogle Scholar
  9. Brown, D.A., and Griffith, W.H., 1983b, Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea pig, J. Phvsiol., 337: 303.Google Scholar
  10. Connors, B.W., Gutnick, M.J., and Prince, D.A., 1982, Electrophysiologic properties of neocortical neurons in vitro, J. Neurophvsiol., 48: 1302.Google Scholar
  11. Constanti, A., and Galvan, M., Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurons, J. Physiol., 335: 153.Google Scholar
  12. Crill, W.E., and Schwindt,.C., 1983, Active currents in mammalian neurons, Trends Neurosci., 6: 236.CrossRefGoogle Scholar
  13. Curtis, D.R., Phillis, J.W., and Watkins, J.C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol., 150: 656.PubMedGoogle Scholar
  14. Davies, J., Evans, R.H., Francis, A.A., Jones, A.W., and Watkins, J.C., 1980, Excitatory amino acid receptors in vertebrate central nervous system, in: Neurotransmitters and Their Receptors, U.Z. Littauer, Y. Dudai, V.I. Silman, V.I. Silman, V.I. Teichberg, and Z. Vogel, eds., Wiley, London, p. 333.Google Scholar
  15. Dichter, M., and Spencer, W.A., 1969a, Penicillin-induced interictal discharges from cat hippocampus. I. Characteristics and topographical features, J. NeurophYsiol., 32: 649.Google Scholar
  16. Dichter, M., and Spencer, W.A., 1969b, Penicillin-induced interictal discharges from cat hippocampus. H. Mechanisms underlying origin and restriction, J. Neurophysiol., 32: 663.Google Scholar
  17. Eccles, J.C., 1957, The Physiology of Nerve Cells, Johns Hopkins Press, Baltimore.Google Scholar
  18. Fischbach, G.D., and Nelson, P.G., 1977, Cell culture, in: Neurobiology, Handbook of Physiology. Section 1, Volume I, E. Kandel, ed., American Physiological Society, Bethesda, p. 719.Google Scholar
  19. Fisher, R.S., Pedley, T.A., Moody, Jr., W.J., and Prince, D.A., The role of extracellular potassium in hippocampal epilepsy, Arch. Neurol., 33: 76.Google Scholar
  20. Flatman, J.A., Schwindt, P.C., and Crill, W.E., 1986, The induction and modification of voltage-sensitive responses in cat neocortical neurons by N-methyl-D-aspartate, Brain Res., 363: 62.PubMedCrossRefGoogle Scholar
  21. Flatman, J.A., Schwindt, P.C., Crill, W.E., and Stafstrom, C.E., 1983, Multiple actions of N-methyl-D-aspartate on cat neocortical neurons in vitro, Brain Res., 266: 169.PubMedCrossRefGoogle Scholar
  22. French, C.R., and Gage, P.W., 1986, A threshold sodium current in pyramidal cells in rat hippocampus, Brain Res., in press.Google Scholar
  23. Fuortes, M.G.F., and Nelson, P.G., 1963, Strychnine: its action on spinal motoneuron spikes during rhythmic firing, Science, 140: 806.PubMedCrossRefGoogle Scholar
  24. Gilly, W.F., and Armstrong, C.M., 1984, Threshold channels - a novel type of sodium channel in squid giant axon, Nature, 309: 448.PubMedCrossRefGoogle Scholar
  25. Goldensohn, E.S., and Purpura, D.P., 1963, Intracellular potentials of cortical neurons during focal epileptogenic discharges, Science, 139: 840.PubMedCrossRefGoogle Scholar
  26. Haas, H.L., Schaerer, B., and Vosmansky, M., 1979, A simple perfusion chamber for the study of nervous tissue slices in vitro, J. Neurosci. Meth., 1: 323.Google Scholar
  27. Hagiwara, S., 1975, Ca2+-dependent action potentials, in: Membranes: A Series of Advances, G. Eisenman, ed., Dekker, New York, p. 359.Google Scholar
  28. Hamill, 0.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391: 85.CrossRefGoogle Scholar
  29. Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117: 500.PubMedGoogle Scholar
  30. Hotson, J.R., Prince, D.A., and Schwartzkroin, P.A., 1979, Anomalous inward rectification in hippocampal neurons, J. NeurophYsiol., 42: 889.PubMedGoogle Scholar
  31. Kandel, E.R., and Spencer, W.A., 1961, Electrophysiology of hippocampal neurons. II. After potentials and repetitive firing, J. Neurophysiol., 24: 243.Google Scholar
  32. Kopeloff, L.M., Barrera, S.E., and Kopeloff, N., Recurrent convulsive seizures in animals produced by immunologic and chemical means, Am. J. Psych., 98: 881.Google Scholar
  33. Llinas, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol., 305: 171.PubMedGoogle Scholar
  34. Matsumoto, H., and Ajmone Marsan, C., 1964a, Cortical cellular phenomena in experimental epilepsy: interictal manifestations, Exp. Neurol., 9: 286.Google Scholar
  35. Matsumoto, H., and Ajmone Marsan, C., 1964b, Cortical cellular phenomena in experimental epilepsy: ictal manifestations, Exp. Neurol., 9: 305.Google Scholar
  36. Matsumoto, H., Ayala, G.F., and Gumnit, R.J., 1969, Neuronal behaviorGoogle Scholar
  37. and triggering mechanism in cortical epileptic focus, J. Neurophvsiol., 32: 668.Google Scholar
  38. Neher, E., and Sakmann, B., 1976, Single-channel currents recorded from membrane of denervated frog muscle fibers, Nature, 260: 779.CrossRefGoogle Scholar
  39. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurons, Nature, 307: 462.PubMedCrossRefGoogle Scholar
  40. Pollen, D.A., and Ajmone Marsan, C., 1965, Cortical inhibitory post-synaptic potentials and strychninization, J. Neurophysiol., 28: 342.PubMedGoogle Scholar
  41. Prince, D.A., 1968, The depolarization shift in ‘epileptic’ neurons, Exp. Neurol., 21: 467.Google Scholar
  42. Prince, D.A., 1969, Electrophysiology of ‘epileptic’ neurons: spike generation, Electroenceph. Clin. Neurophvsiol., 26: 476.Google Scholar
  43. Prince, D.A., and Futamachi, K.J., 1970, Intracellular recordings from chronic epileptogenic foci in the monkey, Electroenceph. Clin. Neurophvsiol., 29: 496.Google Scholar
  44. Schwartzkroin, P.A., 1975, Charactersitics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res., 85: 423.PubMedCrossRefGoogle Scholar
  45. Schwartzkroin, P.A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res., 128: 53.PubMedCrossRefGoogle Scholar
  46. Schwindt, P.C., and Crill, W.E., 1980, Role of a persistent inward current in motoneuron bursting spinal seizures, J. Neurophvsiol., 43: 1296.Google Scholar
  47. Schwindt, P.C., and Crill, W.E., 1981, Voltage-clamp study of cat spinal motoneurons during strychnine-induced seizures, Brain Res., 204: 226.PubMedCrossRefGoogle Scholar
  48. Schwindt, P.C., and Crill, W.E., 1982, Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study, J. Neurophvsiol., 48: 875.Google Scholar
  49. Schwindt, P.C., Spain, W., and Crill, W.E., 1984, Epileptogenic action of tungstic acid gel on cat lumber motoneurons, Brain Res., 291: 140.PubMedCrossRefGoogle Scholar
  50. Somjen, G.G., and Lothman, E.W., 1974, Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord, Brain Res., 69: 153.PubMedCrossRefGoogle Scholar
  51. Somjen, G.G., 1984, Interstitial ion concentration and the role of neuroglia in seizures, in: Electrophysiology of Epilepsy, P. Schwartzkroin and H. Wheal, eds., Academic Press, London, p. 303.Google Scholar
  52. Stafstrom, C.E., Schwindt, P.C., and Crill, W.E., 1982, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res., 236: 221.PubMedCrossRefGoogle Scholar
  53. Stafstrom, C.E., Schwindt, P.C., and Crill, W.E., 1984a, Repetitive firing in layer V neurons from cat neocortex in vitro, J. Neurophysiol., 52: 264.PubMedGoogle Scholar
  54. Stafstrom, C.E., Schwindt, P.C., Flatman, J.A., and Crill, W.E., 1984b, Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro, J, Neurophysiol., 52: 244.Google Scholar
  55. Stafstrom, C.E., Schwindt, P.C., Chubb, M.C., and Crill, W.E., 1985, Proper- ties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophvsiol., 53: 153.Google Scholar
  56. Sugimori, M., and Llinas, R., 1983, Voltage clamping of Purkinje cells in vitro: a study of guinea pig cerebellar slices, Soc. Neurosci. Abstr., 9: 681.Google Scholar
  57. Wilson, W.A., and Goldner, M.M., 1975, Voltage clamping with a single microelectrode, J, Neurobiol., 6: 411.CrossRefGoogle Scholar
  58. Yamamoto, C., 1972, Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro, Exp. Brain Res., 14: 423.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. E. Crill
    • 1
  • P. C. Schwindt
    • 1
  • J. A. Flatman
    • 1
  • C. E. Stafstrom
    • 1
  • W. Spain
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of WashingtonSeattleUSA

Personalised recommendations