Advertisement

Acidic Peptides in Brain: Do They Act at Putative Glutamatergic Synapses?

  • J. T. Coyle
  • R. Blakely
  • R. Zaczek
  • K. J. Koller
  • M. Abreu
  • L. Ory-Layollée
  • R. Fisher
  • J. M. H. ffrench-Mullen
  • D. O. Carpenter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)

Abstract

Glutamic acid (GLU) and/or aspartic acid (ASP) are considered the most likely candidates as the predominant excitatory neurotransmitters in the mammalian brain (Curtis and Johnston, 1974; Cotman et al., 1981; Watkins and Evans, 1981; Fonnum, 1984). Nevertheless, certain reservations about this inference remain because these amino acids are involved in several metabolic pathways, including protein synthesis, and because they exhibit rather uniform excitatory effects on brain neurons. Furthermore, reports of inconsistencies between the pharmacology of ionophoretically applied GLU/ASP and that of the endogenous excitatory neurotransmitter released at putative GLU/ASP synapses have appeared. For example, Hori et al. (1981) demonstrated that a-amino-phosphono-butyric acid (APB) antagonized the effects of the excitatory neurotransmitter released by the lateral olfactory tract (LOT) but not the excitatory effects of ionophoretically applied GLU and ASP, which have been proposed as neurotransmitters for the LOT based upon their selective uptake and evoked release (Bradford and Richards, 1976; Collins, 1978). Shiells et al. (1981) have observed differences in the neurophysiologie effects of GLU on retinal bipolar cells from that of the endogenous neurotransmitter released by the photoreceptors, which is reputed to be GLU.

Keywords

Dorsal Root Ganglion Neuronal Perikaryon Lateral Olfactory Tract Amino Acid Transmitter Pyriform Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, M.E., Blakely, R.D., and Coyle, J.T., 1985, Distribution of (3H]-Nacetyl-aspartyl glutamate binding sites in rat brain: a quantitative in vitro autoradiographic study, Soc. Neurosci. Abstr., 11: 108.Google Scholar
  2. Balcar, V.J., and Johnston, G.A.R., 1972, The structural specificity of high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem., 19: 2657.PubMedCrossRefGoogle Scholar
  3. Bernstein, J., Fisher, R.S., Zaczek, R., and Coyle, J.T., 1985, Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice, J. Neurosci., 5: 1429.PubMedGoogle Scholar
  4. Blakely, R., Ory-Lavollée, L., Thompson, R., and Coyle, J.T., 1985, A high affinity synaptosomal uptake system involving N-acetyl-aspartylglutamate, Soc. Neurosci. Abstr., 11: 108.Google Scholar
  5. Bradford, H.F., and Richards, C.D., 1976, Specific release of endogenous glutamate from pyriform cortex stimulated in vitro, Brain Res., 105: 168.PubMedCrossRefGoogle Scholar
  6. Cangro, C.B., Garrison, D.E., Luongo, P.A., Trackmiller, M.E., Namboodiri, M.A.A., and Neale, J.H., 1985, First immunohistochemical demonstration of N-acetyl-aspartyl-glutamate in specific neurons, Soc. Neurosci. Abstr., 11: 108.Google Scholar
  7. Collins, C.G.S., 1978, Evidence of neurotransmitter role for aspartate and gamma-aminobutyric acid in the rat olfactory cortex, J. Physiol., 291: 51.Google Scholar
  8. Cotman, C.W., Foster, A.C., and Lanthorn, T.H., 1981, An overview of gluta-mate as a neurotransmitter, Adv. Biochem. Psychopharmacol., 27:1. Curtis, D.R., and Johnston, G.A.R., 1974, Amino acid transmitters in the mammalian CNS, Ergeb. Physiol., 69: 97.Google Scholar
  9. Dua, A.K., Pinsky, C., and LaBella, F.S., 1985, Peptidases that terminate the action of enkephalins. Consideration of physiological importance for amino-, carboxy-, endo-, and pseudoenkephalinase, Life Sci., 37: 985.Google Scholar
  10. ffrench-Mullen, J.M.H. Koller, K., Zaczek, R., Coyle, J.T., Hori, N., and Carpenter, D.O., 1985, N-Acetyl-aspartyl glutamate: possible role as the neurotransmitter of the lateral olfactory tract, Proc. Natl. Acad. Sci. USA, 82:3897.Google Scholar
  11. Fonnum, F., 1984, Glutamate: a transmitter in mammalian brain, J. Neurochem., 42: 1.PubMedCrossRefGoogle Scholar
  12. Foster, A.C., and Fagg, G.E., 1984, Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors, Brain Res, Rev., 7: 103.Google Scholar
  13. Greenamyre, J.T., Olson, J.M., Penney, J.B., and Young, D.B., 1985, Auto- radiographic characterization of N-methyl-D-aspartate, quisqualate and kainate-sensitive binding sites, J. Pharmacol. Exp. Ther., 238: 254.Google Scholar
  14. Holz, R., and Senter, R.A., 1981, Choline stimulates nicotinic receptors on adrenal medullary chromaffin cells to induce catecholamine secretion, Science, 214: 466.PubMedCrossRefGoogle Scholar
  15. Hori, N., Auter, C.R., Braitman, D.J., and Carpenter, D.O., 1981, Lateral olfactory tract transmitter: glutamate, aspartate or neither? Cell Mol. Neurobiol., 1: 115.Google Scholar
  16. Koller, K.J., Zaczek, R., and Coyle, J.T., 1984, N-Acetyl-aspartyl-glutamate; regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method, J. Neurochem., 43: 1136.PubMedCrossRefGoogle Scholar
  17. Koller, K.J., and Coyle, J.T., 1984a, Ontogenesis of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in rat brain, Devel. Brain Res., 15: 137.Google Scholar
  18. Koller, K.J., and Coyle, J.T., 1984b, Characterization of the interactions of N-acetyl-aspartyl-glutamate with ( H]-L-glutamate receptors, Eur. J. Pharmacol., 98: 193.Google Scholar
  19. Koller, K.J., and Coyle, J.T., 1984e, Specific labelling of brain receptors with [CHI-N-acetyl-aspartyl-glutamate, Eur. J. Pharmacol., 104: 193.Google Scholar
  20. Koller, K.J., agd Coyle, J.T., 1985, The characterization of the specific binding of [H]-N-acetyl-aspartyl-glutamate to rat brain membranes, J. Neurosci., 5: 2882.PubMedGoogle Scholar
  21. Krnjevié, K., and Reinhardt, W., 1979, Choline excites cortical neurons, Science, 296: 1321.CrossRefGoogle Scholar
  22. Lenda, K., 1981, Ion exchange liquid chromatography of N-acetyl-aspartic acid and some N-acetyl-aspartyl peptides, J. Lieu. Chromatogr., 4: 863.Google Scholar
  23. Reichelt, K.L., and Kvamme, E., 1973, Histamine-dependent formation of N-acetyl-aspartyl peptides in mouse brain, J. Neurochem., 21: 849.PubMedCrossRefGoogle Scholar
  24. Shielis, R.A., Falk, G., and Naghshineh, S., 1981, Action of glutamate and aspartate analogues on rod horizontal and bipolar cells, Nature, 294: 592.CrossRefGoogle Scholar
  25. Sinichkin, A., Sterri, S., Edminson, P.D., Reichelt, K.L., and Kvamme, E., 1977, In vivo labelling of acetyl-aspartyl peptides in mouse brain from intracranially and intraperitonealy administered acetyl-L-[a C]- aspartate, J. Neurochem., 29: 425.PubMedCrossRefGoogle Scholar
  26. Talion, H.H., Moore, S., and Stein, W.H., 1956, N-Acetyl-L-aspartic acid in brain, J. Biol. Chem., 224: 257.Google Scholar
  27. Watkins, J.C., and Evans, R.H., 1981, Excitatory amino acid transmitters, Ann. Rev. Pharmacol. Toxicol., 21: 165.Google Scholar
  28. Zaczek, R., Koller, K.J., Cotter, R., Heller, D., and Coyle, J.T., 1983, N-Acetyl-aspartyl-glutamate: an endogenous peptide with high affinity for a brain ‘glutamate’ receptor, Proc, Natl. Acad. Sci. USA, 80: 1116.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. T. Coyle
    • 1
  • R. Blakely
    • 1
  • R. Zaczek
    • 1
  • K. J. Koller
    • 1
  • M. Abreu
    • 1
  • L. Ory-Layollée
    • 1
  • R. Fisher
    • 1
  • J. M. H. ffrench-Mullen
    • 1
  • D. O. Carpenter
    • 2
  1. 1.Departments of Neuroscience, Pharmacology, Psychiatry and NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Division of Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations