Anti-Excitotoxic Actions of Taurine in the Rat Hippocampus Studied in Vivo and in Vitro

  • E. D. French
  • A. Vezzani
  • W. O. WhetsellJr.
  • R. Schwarcz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


The role of neuroactive amino acids in seizure phenomena has been a subject of intensive study in the past (Morselli et al., 1981; Perry and Hansen, 1981; Huxtable et al., 1983). An additional impetus to this area of research followed the observation that exogenous excitatory amino acids, such as kainic acid, can produce in animals an electroencephalographic and neuropathological profile reminiscent of that found in human patients with temporal lobe epilepsy (Nadler et al., 1978; Pisa et al., 1980; Lothman and Collins, 1981; Sloviter and Damiano, 1981; French et al., 1982; Ben-Ari, 1985). Thus, it was reasonable to conclude that endogenous excitatory amino acids bearing structural similarities to kainate might play pivotal roles in the etiology of seizure disorders. In this regard, glutamate, aspartate, and, more recently, quinolinate (QUIN), endogenous excitants of central nervous tissue, have been suggested as factors involved in initiating events leading to seizures (Lapin, 1978; Coutinho-Netto et al., 1981; Nitsch et al., 1983; Smialowski, 1983; Schwarcz et al., 1984). This conjecture has been indirectly validated by the recent observations that excitatory amino acid antagonists possess anticonvulsant activity in a number of animal models of epilepsy (Croucher et al., 1982; Meldrum et al., 1983; Schwarcz et al., 1984).


Temporal Lobe Epilepsy Excitatory Amino Acid Kainic Acid Quinolinic Acid Dorsal Hippocampus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbeau, A., Inoue, N., Tsukada, Y., and Butterworth, R.F., 1975, The neuropharmacology of taurine, Life Sci., 17: 669.PubMedCrossRefGoogle Scholar
  2. Ben-Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid; mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, 14: 375.PubMedCrossRefGoogle Scholar
  3. Bonhaus, D.W., and Huxtable, R.J., 1984, Seizure-susceptibility and decreased taurine transport in the genetically epileptic rat, Neurochem. Int., 6: 365.Google Scholar
  4. Bonhaus, D.W., Pasantes-Morales, H., and Huxtable, R.J., 1985, Actions of guanidinoethane sulfonate on taurine concentration, retinal morphology and seizure threshold in the neonatal rat, Neurochem. Int., 7: 263.Google Scholar
  5. Coutinho-Netto, J., Abdul-Ghani, A.S., Collins, J.F., and Bradford, H.F., 1981, Is glutamate a trigger factor in epileptic hyperactivity?, Epilepsia, 21: 289.CrossRefGoogle Scholar
  6. Croucher, M.J., Collins, J.F., and Meldrum, B.S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science, 216: 899.PubMedCrossRefGoogle Scholar
  7. Curtis, D.R., and Johnston, G.A.R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol., 69: 97.Google Scholar
  8. Enna, S.J., Kondell, D.A., and Browner, M., 1981, Differential effects of y-vinyl GABA on chemically induced seizures, in: Neurotransmitters, Seizures and Epilepsy, P.L. Morselli, K.G., Lloyd, W. Löscher, B. Meldrum and E.H. Reynolds, eds., Raven Press, New York, p. 107.Google Scholar
  9. Foster, A.C., Vezzani, A., French, E.D., and Schwarcz, R., 1984, Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid, Neurosci. Lett., 48: 273.Google Scholar
  10. French, E.D., and Siggins, G.R., 1980, An iontophoretic survey of opioid peptide actions in the rat limbic system: in search of opiate epileptogenic mechanisms, Regulatory Peptides, 1: 127.PubMedCrossRefGoogle Scholar
  11. French, E.D., Aldinio, C., and Schwarcz, R., 1982, Intrahippocampal kainic acid, seizures and local neuronal degeneration: relationships assessed in unanesthetized rats, Neuroscience, 7: 2525.PubMedCrossRefGoogle Scholar
  12. Ganong, A.H., Lanthorn, T.H., and Cotman, C.W., 1983, Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord, Brain Res., 273: 170.PubMedCrossRefGoogle Scholar
  13. Haug, P., and Nitsch, C., 1982, Increase in taurine content before onset of seizures induced by a glutamate decarboxylase inhibitor, Exp. Brain Res., 48: 463.Google Scholar
  14. Hruska, R.E., Huxtable, R.J., and Yamamura, H.I., 1978, High-affinity, temperature sensitive, and sodium dependent transport of taurine in rat brain, in: Taurine and Neurological Disorders, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, p. 109.Google Scholar
  15. Huxtable, R.J., 1981, Insights on function: metabolism and pharmacology of taurine in the brain, in: The Role of Peptides and Amino Acids as Neurotransmitters, J.B. Lombardini and A. Kenny, eds., Alan R. Liss, Inc., New York, p. 53.Google Scholar
  16. Huxtable, R.J., Laird, H., Lippincott, S.E., and Walson, P., 1983, Epilepsy and the concentrations of plasma amino acids in humans, Neurochem. Int., 5: 125.Google Scholar
  17. Krnjevié, K., and Puil, E., 1976, Electrophysiological studies on actions of taurine, in: Taurine, R. Huxtable and A. Barbeau, eds., Raven Press, New York, p. 179.Google Scholar
  18. Kurachi, M., Yoshihara, K., and Aihara, H., 1983, Effect of taurine on depolarizations induced by L-glutamate and other excitatory amino acids in the isolated spinal cord of the frog, Jap. J. Pharmacol., 33: 1247.Google Scholar
  19. Lapin, I.P., 1978, Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice, J. Neural Trans., 42: 37.CrossRefGoogle Scholar
  20. Lehmann, A., Hagberg, H., and Hamberger, A., 1984, A role for taurine in the maintenance of homeostasis in the central nervous system during hyperexcitation?, Neurosci. Lett., 52: 341.Google Scholar
  21. Lehmann, A., Lazarewicz, J.W., and Zeise, M., 1985, N-methylaspartate-evoked liberation of taurine and phosphoethanolamine in vivo: site of release, J. Neurochem., 45: 1172.PubMedCrossRefGoogle Scholar
  22. Lerma, J., Herreras, O., Herranz, A.S., Munoz, D., and del Rio, R.M., 1984, In vivo effects of nipecotic acid on levels of extracellular GABA and taurine, and hippocampal excitability, Neuropharmacology, 23: 595.PubMedCrossRefGoogle Scholar
  23. Lombardini, J.B., 1978, High-affinity transport of taurine in the mammalian central nervous system, in: Taurine and Neurological Disorders, A. Barbeau and R. Huxtable, eds., Raven Press, New York, p. 119.Google Scholar
  24. Lothman, E.W., and Collins, R.C., 1981, Kainic acid-induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates, Brain Res., 218: 299.PubMedCrossRefGoogle Scholar
  25. McBride, W.J., and Frederickson, R.C.A., 1978, Neurochemical and neurophysio- logical evidence for a role of taurine as an inhibitory neurotransmitter in the cerebellum of the rat, in: Taurine and Neurological Disorders, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, p. 415.Google Scholar
  26. Meldrum, B.S., Croucher, M.J., Badman, G., and Collins, J.F., 1983, Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett., 39: 101.Google Scholar
  27. Moroni, F., Lombardini, G., Carla, V., and Moneti, G., 1984, The excitotoxin quinolinic acid is present and unevenly distributed in the rat brain, Brain Res., 295: 352.PubMedCrossRefGoogle Scholar
  28. Morselli, P.L., Lloyd, K.G., Löscher, W., Meldrum, B., and Reynolds, E.H., 1981, Neurotransmitters, Seizures and Epilepsy, Raven Press, New York.Google Scholar
  29. Mutani, R., Bergamini, L., Delsedine, M., and Durelli, L., 1974, Effects of taurine in chronic experimental epilepsy, Brain Res., 79: 330.PubMedCrossRefGoogle Scholar
  30. Nadler, J., Perry, B.W., and Cotman, C.W., 1978, Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells, Nature, 271: 676.PubMedCrossRefGoogle Scholar
  31. Nitsch, C., Schmude, B., and Haug, P., 1983, Alterations in the content of amino acid neurotransmitters before the onset and during the course of methoxypyridoxine-induced seizures in individual rabbit brain regions, J. Neurochem., 40: 1571.PubMedCrossRefGoogle Scholar
  32. Oja, S.S., and Kontro, P., 1978, Neurotransmitter actions of taurine in the central nervous system, in: Taurine and Neurological Disorders, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, p. 181.Google Scholar
  33. Olney, J.W., 1983, Excitotoxins: an overview, in: Excitotoxins, K. Fuxe,P. Roberts and R. Schwarcz, eds., Macmillan, London, p. 82.Google Scholar
  34. Perkins, M.N. and Stone, T.W., 1983, The pharmacology and regional varia-tions of quinolinic acid evoked excitations in the rat CNS, J. Pharmacol.Exp. Ther., 226:551.Google Scholar
  35. Perry, T.L., and Hansen, S., 1981, Amino acid abnormalities in epileptogenic foci, Neurology, 31: 872.PubMedCrossRefGoogle Scholar
  36. Phillis, J.W., 1978, Overview of neurochemical and neurophysiological actions of taurine, in: Taurine and Neurological Disorders, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, p. 289.Google Scholar
  37. Pisa, M., Sanberg, P.R.,Corcoran, M.E., and Fibiger, H.C., 1980, Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsy, Brain Res., 200: 481.PubMedCrossRefGoogle Scholar
  38. Ribak, C.E., Harris, A.B., Vaughan, J.E., and Roberts, E., 1979, Inhibitory GABAergic terminals decrease at sites of focal epilepsy, Science, 205: 211.PubMedCrossRefGoogle Scholar
  39. Schmid, R., Sieghart, W., and Karobath, M., 1975, Taurine uptake in synaptosomal fractions of rat cerebral cortex, J. Neurochem., 25: 5.PubMedCrossRefGoogle Scholar
  40. Schwarcz, R., and Köhler, C., 1983, Differential vulnerability of central neurons of the rat to quinolinic acid, Neurosci. Lett., 38: 85.Google Scholar
  41. Schwarcz, R., Whetsell, W.O. Jr., and Mangano, R.M., 1983, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science, 219: 316.PubMedCrossRefGoogle Scholar
  42. Schwarcz, R., Brush, G.S., Foster, A.C., and French, E.D., 1984, Seizure activity and lesions after intrahippocampal quinolinic acid injection, Exp. Neurol., 84: 1.Google Scholar
  43. Sloviter, R.S., and Damiano, B.P., 1981, On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage, Neuropharmacologv, 20: 1003.CrossRefGoogle Scholar
  44. Smialowski, A., 1983, Excitatory effect of intrahippocampal injection of glutamic acid on rabbit EEG, J. Neural Trans., 58: 205.CrossRefGoogle Scholar
  45. Toth, E., Lajtha, A., Sarhan, S., and Seiler, N., 1983,. Anticonvulsant effects of some inhibitory neurotransmitter amino acids, Neurochem. Res., 8: 291.Google Scholar
  46. Ungerstedt, U., Herrera-Marschitz, M., Jungnelius, U., Stahle, L., Tossman, U., and Zetterström, T., 1982, Dopamine synaptic mechanisms reflected in studies combining behavioral recordings and brain dialysis, Adv. Dopamine Res., 37: 219.Google Scholar
  47. Van Gelder, N.M., 1972, Antagonism by taurine of cobalt induced epilepsy in cat and mouse, Brain Res., 47: 157.PubMedCrossRefGoogle Scholar
  48. Van Gelder, N.M., and Courtois, A., 1972, Close correlation between changing content of specific amino acids in epileptogenic cortex of cats and severity of epilepsy, Brain Res., 43: 477.PubMedCrossRefGoogle Scholar
  49. Van Gelder, N.M., 1983, A central mechanism of action for taurine, Neurochem. Res., 8: 687.Google Scholar
  50. Vezzani, A., Ungerstedt, U., French, E.D., and Schwarcz, R., 1985, In vivo brain dialysis of amino acids and simulataneous EEG measurements following intrahippocampal quinolinic acid injection: evidence fora dissociation between neurochemical changes and seizures, J. Neurochem., 45: 335.PubMedCrossRefGoogle Scholar
  51. Wheler, G.H.T., Osborne, R.H., Bradford, H.F., and Davison, A.N., 1977, Uptake studies of taurine in vivo and its effects on the course of experimental focal epilepsy in rats, Brain Res., 136: 535.PubMedCrossRefGoogle Scholar
  52. Whetsell, W.O. Jr., and Schwarcz, R., 1983, Mechanisms of excitotoxins examined in organotypic cultures of rat central nervous system, in: Excitotoxins, K. Fuxe, P. Roberts, and R. Schwarcz, eds., Macmillan, London, p. 207.Google Scholar
  53. Wolfensberger, M., Amsler, U., Cuénod, M., Foster, A.C., Whetsell, W.O. Jr., and Schwarcz, R., 1983, Identification of quinolinic acid in rat and human brain tissue, Neurosci. Lett., 41:247.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. D. French
    • 1
  • A. Vezzani
    • 1
  • W. O. WhetsellJr.
    • 2
  • R. Schwarcz
    • 1
  1. 1.Maryland Psychiatric Research CenterUniversity of MarylandBaltimoreUSA
  2. 2.Department of PathologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations