The Hyperexcited Brain: Glutamic Acid Release and Failure of Inhibition

  • N. M. van Gelder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 203)


There no longer exists much doubt that epilepsy is associated with a rather specific set of biochemical alterations (Delgado-Escueta and Greenberg, 1984). Nevertheless, considerable controversy still surrounds the significance of these alterations, touching on several areas of importance. Perhaps the most crucial issue to be resolved is the question whether the biochemical changes found are in consequence of the cerebral dysfunction or whether, indeed, such alterations contribute directly to the cause of the condition. Traditionally, a diagnosis of epilepsy and its classification to type is most commonly confirmed by electroencephalographic evidence. However, the initial reason for arriving at such a diagnosis is usually occasioned only after an individual has complained of periodic and unpredictable episodes of uncontrollable movements, sensations, vegetative or emotional ‘storms’, or other inappropriate outward expressions of autonomous cerebral activity. Hence, an abnormal or epileptiform EEG activity per se, whether focal or diffuse, in most instances is no cause for a positive and clear diagnosis of epilepsy (Hockaday and Whitty, 1969).


Glutamic Acid Epileptic Patient Spreading Depression Gaba Release Gaba Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andermann, E., 1982, Multifactorial inheritance of generalized and focal epilepsy, in: Genetic Basis of the Epilepsies, V. E. Anderson, W.A. Hauser, J.K. Penry, and C.F. Sing, eds., Raven Press, New York, p. 351.Google Scholar
  2. Bazemore, A.W., Elliott, K.A.C., and Florey, E., 1957, Isolation of Factor I, J. Neurochem., 1: 334.CrossRefGoogle Scholar
  3. Baxter, C.F., and Roberts, E., 1961, Elevation of gamma-aminobutyric acid in brain: selective inhibition of gamma-aminobutyric-alpha-ketoglutaric acid transaminase, J. Biol. Chem., 236: 3287.Google Scholar
  4. Bedwani, J.R., Songra, A.K., and Trueman, C.J., 19§4, Influence of aminooxyacetic acid on potassium-evoked release of I H]gamma-aminobutyric acid from slices of rat cerebral cortex, Neurochem. Res., 9: 1101.Google Scholar
  5. Benjamin, A.M., and Quastel, J.H., 1974, Fate of L-glutamate in the brain, J. Neurochem., 23: 457.CrossRefGoogle Scholar
  6. Benveniste, H., Dreier, J., Schousboe, A., and Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem., 43: 1369.PubMedCrossRefGoogle Scholar
  7. Bosley, T.M., Woodhams, P.L., Gordon, R.D., and Balâzs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro, J. Neurochem., 40: 189.PubMedCrossRefGoogle Scholar
  8. Brière, R., Sherwin, A.L., Robitaille, Y., Olivier, A., Quesney, L.F., and Reader, T.A., 1986, Alpha-1 adrenoceptors are decreased in human epileptic foci, Ann Neurol., 19: 26.PubMedCrossRefGoogle Scholar
  9. Buu, N.T., and van Gelder, N.M., 1974, Biological actions in vivo and in vitro of two gamma-aminobutyric acid (GABA) analogues: beta-chloro GABA and beta-phenyl GABA, Br. J. Pharmacol., 52: 401.Google Scholar
  10. Chauvel, P., Trottier, S., Nassif, S., and Dedek, J., 1982, Une altération des afférences noradrénergiques est-elle en cause dans les épilepsies focales?, Rev. E.E.G, Neurophvsiol., 12: 1.Google Scholar
  11. Chesney, R.W., Gusowski, N., Dabbagh, S., and Padilla, M., 1985, Renal cortex taurine concentrations regulate renal adaptive response to altered dietary intake of sulfur amino acids, in: Taurine: Biological Aspects and Clinical Perspectives, S.S. Oja, L. Ahtee, P. Kontro and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, p. 33.Google Scholar
  12. Cloninger, C.R., Rice, J., Reich, T., and MoGurfin, P., 1982, Genetic analysis of seizure disorders as multidimensional threshold characters, in: Genetic Basis of the Epilepsies, V.E. Anderson, W.A. Hauser, J.K. Penry, and C.R. Sing, eds., Raven Press, New York, p. 291.Google Scholar
  13. Delgado-Escueta, A.V., and Greenberg, D., 1984, The search for epilepsies ideal for clinical and molecular genetic studies, Ann. Neurol., 16 ( Suppl. ): S1.Google Scholar
  14. Denner, L.A., and Wu, J.-Y., 1985, Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate, J. Neurochem., 44: 957.PubMedCrossRefGoogle Scholar
  15. Dodd, P.R., Bradford, H.F., Abdul-Ghani, A.S., Cox, D.W.G., and CoutinhoNetto, J., 1980, Release of amino acids from chronic epileptic and sub-epileptic foci in vivo, Brain Res., 193: 505.PubMedCrossRefGoogle Scholar
  16. Durelli, L., Mutani, R., Quattrocolo, G., Delsedime, M., Buffa, C., Fassio, F., Valentino, C., and Fumero, S., 1977, Relationships between electroencephalographic pattern and biochemical picture of the cobalt epileptogenic lesion after cortical superfusion with taurine, EXD. Neurol., 54: 489.Google Scholar
  17. Durelli, L, and Mutani, R., 1983, The current status of taurine in epilepsy, Clin. Neurooharmacol., 6: 37.Google Scholar
  18. Elliott, K.A.C., and Japser, H.H., 1959, Gamma-aminobutyric acid, Phvsiol. Rev., 39: 383.Google Scholar
  19. Elliott, K.A.C., and van Gelder, N.M., 1960, The state of Factor I in rat brain: the effects of metabolic conditions and drugs, J. Phvsiol. 153: 423.Google Scholar
  20. Elliott, K.A.C., 1965, Gamma-aminobutyric acid and other inhibitory substances, Brit. Med. Bull., 21: 70.Google Scholar
  21. Engel, J., Ackermann, R., Caldecott-Hazard, S., and Kuhl, D., 1981, Epileptic activation of antagonistic systems may explain parodoxical features of experimental and human epilepsy: a review and hypothesis, in: Kindling 2, J. Wada, ed., Raven Press, New York, p. 193.Google Scholar
  22. Fischel, S.V., and Medzihradsky, F., 1985, Assessment of membrane permeability in primary cultures of neurons and glia in response to osmotic perturbation, J. Neurosci. Res., 13: 369.Google Scholar
  23. Fromm, G.H., Terrence, C.F., and Chattha, A.S., 1985, Differential effect of antiepileptic and non-epileptic drugs on the reticular formation, Life Sci., 35: 2665.CrossRefGoogle Scholar
  24. Gastaut, H., and Zifkin, B.G., 1986, Benign epilepsy of childhood with occipital spike and wave complexes: correlations with other primary epilepsies and with migraine, in: Migraine and Epilepsy, F. Andermann, and E. Lugaresi, eds., Butterworth, Boston, in press.Google Scholar
  25. Goldensohn, E.S., 1969, Experimental seizure mechanisms, in: Basic Mechanisms of the EDileDsies, H.H. Jasper, A.A. Ward, and A. Pope, eds., Little, Brown and Co., Boston, p. 289.Google Scholar
  26. Hiramatsu, M., 1983, Brain 5-hydroxytryptamine level, metabolism, and binding in El mice, Neurochem. Res., 8: 1163.Google Scholar
  27. Hirsch, J.A., and Gibson, G.E., 1984, Selective alteration of neurotransmitter release by low oxygen in vitro, Neurochem. Res., 9: 1039.Google Scholar
  28. Hockaday, J.M., and Whitty, C.W.M., 1969, Factors determining the electroencephalogram in migraine: a study of 560 patients, according to clinical type of migraine, Brain, 92: 769.PubMedCrossRefGoogle Scholar
  29. Hopkins, W.F., and Johnston, D., 1984, Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus, Science, 226:350. Hunt, A.D., Stokes, J., McCrory, W.W., and Stroud, H.H., 1954, Pyridoxine dependency, Pediatrics, 13: 140.Google Scholar
  30. Huxtable, R.J., Laird, H., Lippincott, S.E., and Walson, P., 1983, Epilepsy and the concentrations of plasma amino acids in humans, Neurochem. Int., 5: 125.Google Scholar
  31. Iadarola, I., Raines, A., and Gale, K., 1979, Differential effects of n-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of the rat brain, J. Neurochem., 33: 1119.Google Scholar
  32. Iwama, K., and Jasper, H.H., 1957, The action of gamma-aminobutyric acid upon cortical electrical activity in the cat, J. Phvsiol., 138: 365.Google Scholar
  33. Jasper, H.H., Khan, R.T., and Elliott, K.A.C., 1965, Amino acids released from the cerebral cortex in relation to its state of activation, Science, 147: 1448.PubMedCrossRefGoogle Scholar
  34. Johnston, D., and Brown, T.H., 1984, The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons, Ann. Neurol., 16 (Suppl.): S65.PubMedCrossRefGoogle Scholar
  35. Killam, K.F., and Bain, J.A., 1957, Convulsant hydrazides 1: in vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides, J. Pharmacol. Exp. Therap., 119: 255.Google Scholar
  36. Koyama, I., and Jasper, H., 1977, Amino acid content of chronic undercut cortex of the cat in relation to electrical afterdischarge: comparison with cobalt epileptogenic lesions, Can. J. Physiol. Pharmacol., 55: 523.Google Scholar
  37. Kravitz, E.A., Potter, D.D., and van Gelder, N.M., 1962, Gamma-aminobutyric acid distribution in the lobster nervous system: CNS, peripheral nerves and isolated motor and inhibitory axons, Biochem. Biophvs. Res. Commun., 7: 231.Google Scholar
  38. Krespan, B., Berl, S., and Nicklas, W.J., 1982, Alterations in neuronal-glial metabolism of glutamate by the neurotoxin kainic acid, J. Neurochem., 38: 509.PubMedCrossRefGoogle Scholar
  39. Krnjevid, K., 1983, GABA-mediated inhibitory mechanisms in relation to epileptic discharges, in: Basic Mechanisms of Neuronal Hvperexcitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 249.Google Scholar
  40. Kuffler, S.W., and Edwards, C., 1958, Mechanism of gamma aminobutyric acid ( GABA) action and its relation to synaptic inhibition, J. Neurophvsiol., 21: 586.Google Scholar
  41. Kuriyama, K., Roberts, E., and Rubinstein, M.K., 1966, Elevation of gammaaminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative reevaluation, Biochem. Pharmacol., 15: 221.Google Scholar
  42. Lance, J.W., 1981, Pathophysiology of the migraine syndrome, in: Current Concepts in Migraine, Ayerst Lab. Publ., p. 5.Google Scholar
  43. Lauritzen, M., Trojaborg, W., and Olesen, J., 1981, EEG during attacks of common and classical migraine, Cephalogia, 1: 63.CrossRefGoogle Scholar
  44. Lauritzen, M., 1986, Cerebral blood flow in migraine and spreading depression, in: Migraine and Epilepsy, F. Andermann, and E. Lugaresi, eds., Butterworth, in press.Google Scholar
  45. Leao, A.A.P., 1944, Pial circulation and spreading depression of activity in the cerebral cortex, J. Neurophysiol., 7: 391.Google Scholar
  46. Lehmann, A., Hagberg, H., Nyström, B., Sandberg, M., and Hamberger, A., 1985, In vivo regulation of extracellular taurine and other neuroactive amino acids in the rabbit hippocampus, in: Taurine: Biological Actions and Clinical Perspectives, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, 289–311.Google Scholar
  47. Lejhon, H.B., and Jackson, S.G., 1969, Regulation of mitochondrial glutamic dehydrogenase by divalent metals, nucleotides, and alpha-ketoglutarate, J. Biol. Chem., 244: 5346.Google Scholar
  48. Madtes, P., 1984, Chloride ions preferentially mask high-affinity GABA binding sites, J. Neurochem., 43: 1434.PubMedCrossRefGoogle Scholar
  49. Matsuda, M., Abe, M., Hoshino, M., and Sakurai, T., 1979, Gamma-aminobutyric acid in subcellular fractions of mouse brain and its relation to convulsions, Biochem. Pharmacol., 28: 2785.Google Scholar
  50. Mihâly, A., and Bozoky, B., 1984, Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions, Acta Neuropathol., 65: 25.PubMedCrossRefGoogle Scholar
  51. Mirski, M.A., and Ferrendelli, J.A., 1984, Interruption of the mammillo- thalamic tract prevents seizures in guinea pigs, Science, 226: 72.PubMedCrossRefGoogle Scholar
  52. Monaco, F., Mutani, R., Durelli, L., and Delsedime, M., 1975, Free amino acids in serum of patients with epilepsy: significant increase in taurine, Epilepsia, 16: 245.PubMedCrossRefGoogle Scholar
  53. Nicholson, C., 1983, Regulation of the ion microenvironment and neuronal excitability, In: Basic Mechanisms of Neuronal Hvpgrexcitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 185.Google Scholar
  54. Nicklas, W.J., Berl, S., and Clarke, D.D., 1975, Relationship between amino acid and catecholamine metabolism in brain, in: Metabolic Comoartmentation and Neurotransmission: Relation to Brain Structure and Func- tion, S. Berl, D.D. Clarke, and D. Schneider, eds., Plenum Press, New York, p. 497.Google Scholar
  55. Norris, D.K., Murphy, R.A., and Chung, S.H., 1985, Alterations of amino acid metabolism in epileptogenic mice by elevation of brain pyridoxal phosphate, J. Neurochem,, 44: 1403.PubMedCrossRefGoogle Scholar
  56. Oja, S.S., Korpi, E.R., Halopainen, I., and Kontro, P., 1985, Mechanisms of stimulated taurine release from nervous tissue, in: Taurine; Biological Actions and Clinical Perspectives, S.S. Oja, L. Ahteen, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, p. 237.Google Scholar
  57. Orrego, F., Miran, R., and Soldate, C., 1976, Electrically induced release of labelled taurine, alpha- and beta-alanine, glycine, glutamate and other amino acids from rat neocortical slices in vitro, Neuroscience, 1: 325.PubMedCrossRefGoogle Scholar
  58. Pappius, H.M., and Elliott, K.A.C., 1956, Water distribution in incubated slices of brain and other tissue, Can. J. Phvsiol. Pharmacol., 34: 1007.Google Scholar
  59. Porter, T.G., and Martin, D.L., 1984, Evidence for feedback regulation of glutamate decarboxylase by gamma-aminobutyric acid, J. Neurochem., 43: 1464.PubMedCrossRefGoogle Scholar
  60. Prince, D.A., and Connors, B.W., 1984, Mechanisms of epileptogenesis in cortical structures, Ann. Neurol., 16 (Suppl.): S59.PubMedCrossRefGoogle Scholar
  61. Puil, E., 1981, S-glutamate: its interactions with spinal neurons, Brain Res. Rev., 3: 229.Google Scholar
  62. Reulen, H.J., Graham, R., Fenske, A., Tsuyumu, M., and Klatzo, I., 1976, The role of tissue pressure and bulk flow in the formation and resolution of cold-induced edema, in: Dynamics of Brain Edema, H.M. Pappius, and W. Feindel, eds., Springer-Verlag, Berlin, p. 103.CrossRefGoogle Scholar
  63. Ribak, C.E., Bradburne, R.M., and Harris, A.B., 1982, A preferential loss of GABAergic, symmetric synapses in epileptic foci: a quantitative ultrastructural analysis of monkey neocortex, J. Neurol Sci., 2: 1725.Google Scholar
  64. Scheibel, A.B., Paul, L., and Fried, I., 1983, Some structural substrates of the epileptic states, i31: Basic Mechanisms of Neuronal Hvoerexcitabilitv, H.H. Jasper and N.M. van Gelder, eds., Alan R. Liss, Inc.,New York, p. 109.Google Scholar
  65. Selby, G., and Lance, J.W., 1960, Observations on 500 cases of migraineand allied vascular headache, J. Neurol. Neurosurw., Psvchiat., 23: 23.Google Scholar
  66. Sherwin, A., Quesney, F., Gautheir, S., Olivier, A., Robitaille, Y., McQuaid, P., Harvey, C., and van Gelder, N.M., 1984, Enzyme changesin actively spiking areas of human epileptic cerebral cortex, Neurology, 34: 927.PubMedCrossRefGoogle Scholar
  67. Sherwin, A.L., and van Gelder, N.M., 1986, Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy, in: Basic Mechanisms of the Eoileosies, A.V. Delgado-Escueta, A.A. Ward, D.M. Woodbury, and A.J. Porter, eds., Raven Press, New York, in press.Google Scholar
  68. Sihra, T.S., Scott, I.G., and Nichols, D.G., 1984, Ionophore A23187, vera-pamil, protonophores, and veratridine influence the release of gammaaminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium, J. Neurochem., 43: 1624.PubMedCrossRefGoogle Scholar
  69. Takano, T., Kaneko, Y., Kumashiro, H., Sugai, N., and Oosaki, T., 1984, Kainate seizure and carbonic anhydrase ( CAH) reaction in the hippocampal structures, Neurosciences(Kobe), 10: 309.Google Scholar
  70. Traub, R.D., and Wong, R.K.S., 1982, Cellular mechanisms of neuronal synchronization in epilepsy, Science, 216: 745.PubMedCrossRefGoogle Scholar
  71. van Gelder, N.M., Sherwin, A.L., Sacks, C., and Andermann, F., 1975, Biochemical observations following administration of taurine to patients with epilepsy, Brain Res., 94: 297.PubMedCrossRefGoogle Scholar
  72. van Gelder, N.M., 1978, Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies, Can. J. Physiol. Pharmacol., 56: 362.Google Scholar
  73. van Gelder, N.M., and Drujan, B.D., 1980, Alterations in the compartmentalized metabolism of glutamic acid with changed cerebral conditions, Brain Res., 200: 443.PubMedCrossRefGoogle Scholar
  74. van Gelder, N.M., Janjua, N.A., Metrakos, K., MacGibbon, B., and Metrakos, J.D., 1980, Plasma amino acids in 3/sec spike-and-wave epilepsy, Neurochem. Res., 5: 659.Google Scholar
  75. van Gelder, N.M., 1981, The role of taurine and glutamic acid in the epileptic process: a genetic predisposition, Rev. Pure Appl. Pharmacol. Sci., 2: 293.Google Scholar
  76. van Gelder, N.M., 1982, Changed taurine-glutamic acid content and altered nervous tissue cytoarchitecture, Adv. Expt. Med. Biol., 139: 239.Google Scholar
  77. van Gelder, N.M., 1983a, Metabolic interactions between neurons and astro-glia: glutamine synthetase, carbonic anhydrase and water balance,in: Basic Mechanisms of Neuronal Excitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 5.Google Scholar
  78. van Gelder, N.M., 1983b, A central mechanism of action for taurine: osmoregulation, bivalent cations and excitation threshold, Neurochem. Res., 8:687.Google Scholar
  79. van Gelder, N.M., Siatitsas, I., Ménini, C., and Gloor, P., 1983, Feline generalized penicillin epilepsy: changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex, Epilepsia, 24: 200.PubMedCrossRefGoogle Scholar
  80. Van Harreveld, A., and Ochs, S., 1957, Electrical and vascular concomitants of spreading depression, Am. J. Physiol., 189: 159.Google Scholar
  81. Van Harreveld, A., and Fifkova, E., 1971, Effects of glutamate and other amino acids on the retina, J. Neurochem., 18: 2145.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. M. van Gelder
    • 1
  1. 1.CRSN/Dép. de physiologie, Faculté de médecineUniversité de MontréalMontréalCanada

Personalised recommendations